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PREFACE

Plato said, “God is a geometer.” Jacobi changed this to, “God is an arithmetician.” Then
came Kronecker and fashioned the memorable expression, “God created the natural
numbers, and all the rest is the work of man.”
FELIX KLEIN

The purpose of this volume is to give a simple account of classical number theory and
to impart some of the historical background in which the subject evolved. Although
primarily intended for use as a textbook in a one-semester course at the undergraduate
level, it is designed to be used in teachers’ institutes or as supplementary reading
in mathematics survey courses. The work is well suited for prospective secondary
school teachers for whom a little familiarity with number theory may be particularly
helpful.

The theory of numbers has always occupied a unique position in the world of
mathematics. This is due to the unquestioned historical importance of the subject: it
is one of the few disciplines having demonstrable results that predate the very idea
of a university or an academy. Nearly every century since classical antiquity has
witnessed new and fascinating discoveries relating to the properties of numbers; and,
at some point in their careers, most of the great masters of the mathematical sciences
have contributed to this body of knowledge. Why has number theory held such an
irresistible appeal for the leading mathematicians and for thousands of amateurs?
One answer lies in the basic nature of its problems. Although many questions in the
field are extremely hard to decide, they can be formulated in terms simple enough
to arouse the interest and curiosity of those with little mathematical training. Some
of the simplest sounding questions have withstood intellectual assaults for ages and
remain among the most elusive unsolved problems in the whole of mathematics.

It therefore comes as something of a surprise to find that many students look
upon number theory with good-humored indulgence, regarding it as a frippery on
the edge of mathematics. This no doubt stems from the widely held view that it
is the purest branch of pure mathematics and from the attendant suspicion that it
can have few substantive applications to real-world problems. Some of the worst

viii
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PREFACE ix

offenders, when it comes to celebrating the uselessness of their subject, have been
number theorists themselves. G. H. Hardy, the best known figure of 20th century
British mathematics, once wrote, “Both Gauss and lesser mathematicians may be
justified in rejoicing that there is one science at any rate, and that their own, whose
very remoteness from ordinary human activities should keep it clean and gentle.”
The prominent role that this “clean and gentle” science played in the public-key
cryptosystems (Section 10.1) may serve as something of a reply to Hardy. Leaving
practical applications aside, the importance of number theory derives from its central
position in mathematics; its concepts and problems have been instrumental in the
creation of large parts of mathematics. Few branches of the discipline have absolutely
no connection with the theory of numbers.

The past few years have seen a dramatic shift in focus in the undergraduate
curriculum away from the more abstract areas of mathematics and toward applied
and computational mathematics. With the increasing latitude in course choices,
one commonly encounters the mathematics major who knows little or no number
theory. This is especially unfortunate, because the elementary theory of numbers
should be one of the very best subjects for early mathematical instruction. It requires
no long preliminary training, the content is tangible and familiar, and—more than
in any other part of mathematics—the methods of inquiry adhere to the scientific
approach. The student working in the field must rely to a large extent upon trial
and error, in combination with his or her own curiosity, intuition, and ingenuity;
nowhere else in the mathematical disciplines is rigorous proof so often preceded by
patient, plodding experiment. If the going occasionally becomes slow and difficult,
one can take comfort in knowing that nearly every noted mathematician of the past
has traveled the same arduous road.

There is a dictum that anyone who desires to get at the root of a subject should
first study its history. Endorsing this, we have taken pains to fit the material into the
larger historical frame. In addition to enlivening the theoretical side of the text, the
historical remarks woven into the presentation bring out the point that number theory
is not a dead art, but a living one fed by the efforts of many practitioners. They reveal
that the discipline developed bit by bit, with the work of each individual contributor
built upon the research of many others; often centuries of endeavor were required
before significant steps were made. A student who is aware of how people of genius
stumbled and groped their way through the creative process to arrive piecemeal at
their results is less likely to be discouraged by his or her own fumblings with the
homework problems.

A word about the problems. Most sections close with a substantial number of
them ranging in difficulty from the purely mechanical to challenging theoretical
questions. These are an integral part of the book and require the reader’s active
participation, for nobody can learn number theory without solving problems. The
computational exercises develop basic techniques and test understanding of con-
cepts, whereas those of a theoretical nature give practice in constructing proofs.
Besides conveying additional information about the material covered earlier, the
problems introduce a variety of ideas not treated in the body of the text. We have on
the whole resisted the temptation to use the problems to introduce results that will
be needed thereafter. As a consequence, the reader need not work all the exercises
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in order to digest the rest of the book. Problems whose solutions do not appear
straightforward are frequently accompanied by hints.

The text was written with the mathematics major in mind; it is equally valuable
for education or computer science majors minoring in mathematics. Very little is
demanded in the way of specific prerequisites. A significant portion of the book can be
profitably read by anyone who has taken the equivalent of a first-year college course
in mathematics. Those who have had additional courses will generally be better
prepared, if only because of their enhanced mathematical maturity. In particular, a
knowledge of the concepts of abstract algebra is not assumed. When the book is
used by students who have had an exposure to such matter, much of the first four
chapters can be omitted.

Our treatment is structured for use in a wide range of number theory courses, of
varying length and content. Even a cursory glance at the table of contents makes plain
that there is more material than can be conveniently presented in an introductory
one-semester course, perhaps even enough for a full-year course. This provides
flexibility with regard to the audience and allows topics to be selected in accordance
with personal taste. Experience has taught us that a semester-length course having
the Quadratic Reciprocity Law as a goal can be built up from Chapters 1 through 9.
It is unlikely that every section in these chapters need be covered; some or all of
Sections 5.4, 6.2, 6.3, 6.4, 7.4, 8.3, 8.4, and 9.4 can be omitted from the program
without destroying the continuity in our development. The text is also suited to
serve a quarter-term course or a six-week summer session. For such shorter courses,
segments of further chapters can be chosen after completing Chapter 4 to construct
a rewarding account of number theory.

Chapters 10 through 16 are almost entirely independent of one another and so
may be taken up or omitted as the instructor wishes. (Probably most users will want
to continue with parts of Chapter 10, while Chapter 14 on Fibonacci numbers seems
to be a frequent choice.) These latter chapters furnish the opportunity for additional
reading in the subject, as well as being available for student presentations, seminars,
or extra-credit projects.

Number theory is by nature a discipline that demands a high standard of rigor.
Thus, our presentation necessarily has its formal aspect, with care taken to present
clear and detailed arguments. An understanding of the statement of a theorem, not
the proof, is the important issue. But a little perseverance with the demonstration
will reap a generous harvest, for our hope is to cultivate the reader’s ability to follow
a causal chain of facts, to strengthen intuition with logic. Regrettably, it is all too
easy for some students to become discouraged by what may be their first intensive
experience in reading and constructing proofs. An instructor might ease the way
by approaching the beginnings of the book at a more leisurely pace, as well as
restraining the urge to attempt all the interesting problems.

NEW TO THIS EDITION

Readers familiar with the previous edition will find that this one has the same general
organization and content. Nevertheless, the preparation of this seventh edition has
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provided the opportunity for making a number of small improvements and several
more significant ones.

The advent and general accessibility of fast computers have had a profound ef-
fect on almost all aspects of number theory. This influence has been particularly felt
in the areas of primality testing, integers factorization, and cryptographic applica-
tions. Consequently, the discussion of public key cryptosystems has been expanded
and furnished with an additional illustration. The knapsack cryptosystem has like-
wise been given a further example. The most notable difference between the present
edition and the previous one is the inclusion, in Chapter 15, of a new section deal-
ing with Farey fractions. The notion provides a straightforward means of closely
approximating irrational numbers by rational values. (Its location should not deter
the reader from taking up the topic earlier.)

There are other, less pronounced but equally noteworthy, changes in the text. The
concept of universal quadratics is briefly introduced in Section 13.3, and Bernoulli
numbers receive some attention in Section 16.4. Also, the ever-expanding list of
Mersenne numbers has been moved from the narrative of the text to Table 6 in the
Tables section of the Appendixes.
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CHAPTER

1
PRELIMINARIES

Number was born in superstition and reared in mystery, . . . numbers were once
made the foundation of religion and philosophy, and the tricks of figures

have had a marvellous effect on a credulous people.
F. W. PARKER

1.1 MATHEMATICAL INDUCTION

The theory of numbers is concerned, at least in its elementary aspects, with properties
of the integers and more particularly with the positive integers 1, 2, 3, . . . (also
known as the natural numbers). The origin of this misnomer harks back to the
early Greeks for whom the word number meant positive integer, and nothing else.
The natural numbers have been known to us for so long that the mathematician
Leopold Kronecker once remarked, “God created the natural numbers, and all the
rest is the work of man.” Far from being a gift from Heaven, number theory has
had a long and sometimes painful evolution, a story that is told in the ensuing
pages.

We shall make no attempt to construct the integers axiomatically, assuming
instead that they are already given and that any reader of this book is familiar with
many elementary facts about them. Among these is the Well-Ordering Principle,
stated here to refresh the memory.

Well-Ordering Principle. Every nonempty set S of nonnegative integers contains a
least element; that is, there is some integer a in S such that a ≤ b for all b’s belonging
to S.

1
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2 ELEMENTARY NUMBER THEORY

Because this principle plays a critical role in the proofs here and in subsequent
chapters, let us use it to show that the set of positive integers has what is known as
the Archimedean property.

Theorem 1.1 Archimedean property. If a and b are any positive integers, then
there exists a positive integer n such that na ≥ b.

Proof. Assume that the statement of the theorem is not true, so that for some a and b,
na < b for every positive integer n. Then the set

S = {b − na | n a positive integer}
consists entirely of positive integers. By the Well-Ordering Principle, S will possess a
least element, say, b − ma. Notice that b − (m + 1)a also lies in S, because S contains
all integers of this form. Furthermore, we have

b − (m + 1)a = (b − ma) − a < b − ma

contrary to the choice of b − ma as the smallest integer in S. This contradiction arose
out of our original assumption that the Archimedean property did not hold; hence, this
property is proven true.

With the Well-Ordering Principle available, it is an easy matter to derive the First
Principle of Finite Induction, which provides a basis for a method of proof called
mathematical induction. Loosely speaking, the First Principle of Finite Induction
asserts that if a set of positive integers has two specific properties, then it is the set
of all positive integers. To be less cryptic, we state this principle in Theorem 1.2.

Theorem 1.2 First Principle of Finite Induction. Let S be a set of positive integers
with the following properties:

(a) The integer 1 belongs to S.
(b) Whenever the integer k is in S, the next integer k + 1 must also be in S.

Then S is the set of all positive integers.

Proof. Let T be the set of all positive integers not in S, and assume that T is nonempty.
The Well-Ordering Principle tells us that T possesses a least element, which we denote
by a. Because 1 is in S, certainly a > 1, and so 0 < a − 1 < a. The choice of a as the
smallest positive integer in T implies that a − 1 is not a member of T , or equivalently
that a − 1 belongs to S. By hypothesis, S must also contain (a − 1) + 1 = a, which
contradicts the fact that a lies in T . We conclude that the set T is empty and in
consequence that S contains all the positive integers.

Here is a typical formula that can be established by mathematical induction:

12 + 22 + 32 + · · · + n2 = n(2n + 1)(n + 1)

6
(1)

for n = 1, 2, 3, . . . . In anticipation of using Theorem 1.2, let S denote the set of
all positive integers n for which Eq. (1) is true. We observe that when n = 1, the
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PRELIMINARIES 3

formula becomes

12 = 1(2 + 1)(1 + 1)

6
= 1

This means that 1 is in S. Next, assume that k belongs to S (where k is a fixed but
unspecified integer) so that

12 + 22 + 32 + · · · + k2 = k(2k + 1)(k + 1)

6
(2)

To obtain the sum of the first k + 1 squares, we merely add the next one, (k + 1)2,
to both sides of Eq. (2). This gives

12 + 22 + · · · + k2 + (k + 1)2 = k(2k + 1)(k + 1)

6
+ (k + 1)2

After some algebraic manipulation, the right-hand side becomes

(k + 1)

[
k(2k + 1) + 6(k + 1)

6

]
= (k + 1)

[
2k2 + 7k + 6

6

]

= (k + 1)(2k + 3)(k + 2)

6

which is precisely the right-hand member of Eq. (1) when n = k + 1. Our reasoning
shows that the set S contains the integer k + 1 whenever it contains the integer k.
By Theorem 1.2, S must be all the positive integers; that is, the given formula is true
for n = 1, 2, 3, . . . .

Although mathematical induction provides a standard technique for attempting
to prove a statement about the positive integers, one disadvantage is that it gives no
aid in formulating such statements. Of course, if we can make an “educated guess”
at a property that we believe might hold in general, then its validity can often be
tested by the induction principle. Consider, for instance, the list of equalities

1 = 1

1 + 2 = 3

1 + 2 + 22 = 7

1 + 2 + 22 + 23 = 15

1 + 2 + 22 + 23 + 24 = 31

1 + 2 + 22 + 23 + 24 + 25 = 63

We seek a rule that gives the integers on the right-hand side. After a little reflection,
the reader might notice that

1 = 2 − 1 3 = 22 − 1 7 = 23 − 1

15 = 24 − 1 31 = 25 − 1 63 = 26 − 1

(How one arrives at this observation is hard to say, but experience helps.) The pattern
emerging from these few cases suggests a formula for obtaining the value of the
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4 ELEMENTARY NUMBER THEORY

expression 1 + 2 + 22 + 23 + · · · + 2n−1; namely,

1 + 2 + 22 + 23 + · · · + 2n−1 = 2n − 1 (3)

for every positive integer n.
To confirm that our guess is correct, let S be the set of positive integers n for

which Eq. (3) holds. For n = 1, Eq. (3) is certainly true, whence 1 belongs to the set
S. We assume that Eq. (3) is true for a fixed integer k, so that for this k

1 + 2 + 22 + · · · + 2k−1 = 2k − 1

and we attempt to prove the validity of the formula for k + 1. Addition of the term
2k to both sides of the last-written equation leads to

1 + 2 + 22 + · · · + 2k−1 + 2k = 2k − 1 + 2k

= 2 · 2k − 1 = 2k+1 − 1

But this says that Eq. (3) holds when n = k + 1, putting the integer k + 1 in S so
that k + 1 is in S whenever k is in S. According to the induction principle, S must
be the set of all positive integers.

Remark. When giving induction proofs, we shall usually shorten the argument by
eliminating all reference to the set S, and proceed to show simply that the result in
question is true for the integer 1, and if true for the integer k is then also true for k + 1.

We should inject a word of caution at this point, to wit, that one must be careful
to establish both conditions of Theorem 1.2 before drawing any conclusions; neither
is sufficient alone. The proof of condition (a) is usually called the basis for the
induction, and the proof of (b) is called the induction step. The assumptions made in
carrying out the induction step are known as the induction hypotheses. The induction
situation has been likened to an infinite row of dominoes all standing on edge and
arranged in such a way that when one falls it knocks down the next in line. If either
no domino is pushed over (that is, there is no basis for the induction) or if the spacing
is too large (that is, the induction step fails), then the complete line will not fall.

The validity of the induction step does not necessarily depend on the truth of
the statement that one is endeavoring to prove. Let us look at the false formula

1 + 3 + 5 + · · · + (2n − 1) = n2 + 3 (4)

Assume that this holds for n = k; in other words,

1 + 3 + 5 + · · · + (2k − 1) = k2 + 3

Knowing this, we then obtain

1 + 3 + 5 + · · · + (2k − 1) + (2k + 1) = k2 + 3 + 2k + 1

= (k + 1)2 + 3

which is precisely the form that Eq. (4) should take when n = k + 1. Thus, if
Eq. (4) holds for a given integer, then it also holds for the succeeding integer. It
is not possible, however, to find a value of n for which the formula is true.
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There is a variant of the induction principle that is often used when Theorem 1.2
alone seems ineffective. As with the first version, this Second Principle of Finite In-
duction gives two conditions that guarantee a certain set of positive integers actually
consists of all positive integers. This is what happens: we retain requirement (a), but
(b) is replaced by

(b′) If k is a positive integer such that 1, 2, . . . , k belong to S, then k + 1 must also
be in S.

The proof that S consists of all positive integers has the same flavor as that of
Theorem 1.2. Again, let T represent the set of positive integers not in S. Assuming
that T is nonempty, we choose n to be the smallest integer in T . Then n > 1,
by supposition (a). The minimal nature of n allows us to conclude that none of the
integers 1, 2, . . . , n − 1 lies in T , or, if we prefer a positive assertion, 1, 2, . . . , n − 1
all belong to S. Property (b′) then puts n = (n − 1) + 1 in S, which is an obvious
contradiction. The result of all this is to make T empty.

The First Principle of Finite Induction is used more often than is the Second;
however, there are occasions when the Second is favored and the reader should be
familiar with both versions. It sometimes happens that in attempting to show that
k + 1 is a member of S, we require proof of the fact that not only k, but all positive
integers that precede k, lie in S. Our formulation of these induction principles has
been for the case in which the induction begins with 1. Each form can be generalized
to start with any positive integer n0. In this circumstance, the conclusion reads as
“Then S is the set of all positive integers n ≥ n0.”

Mathematical induction is often used as a method of definition as well as a
method of proof. For example, a common way of introducing the symbol n! (pro-
nounced “n factorial”) is by means of the inductive definition

(a) 1! = 1,

(b) n! = n · (n − 1)! for n > 1.

This pair of conditions provides a rule whereby the meaning of n! is specified for
each positive integer n. Thus, by (a), 1! = 1; (a) and (b) yield

2! = 2 · 1! = 2 · 1

while by (b), again,

3! = 3 · 2! = 3 · 2 · 1

Continuing in this manner, using condition (b) repeatedly, the numbers 1!, 2!, 3!, . . . ,
n! are defined in succession up to any chosen n. In fact,

n! = n · (n − 1) · · · 3 · 2 · 1

Induction enters in showing that n!, as a function on the positive integers, exists and
is unique; however, we shall make no attempt to give the argument.

It will be convenient to extend the definition of n! to the case in which n = 0
by stipulating that 0! = 1.
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Example 1.1. To illustrate a proof that requires the Second Principle of Finite Induc-
tion, consider the so-called Lucas sequence:

1, 3, 4, 7, 11, 18, 29, 47, 76, . . .

Except for the first two terms, each term of this sequence is the sum of the preceding
two, so that the sequence may be defined inductively by

a1 = 1

a2 = 3

an = an−1 + an−2 for all n ≥ 3

We contend that the inequality

an < (7/4)n

holds for every positive integer n. The argument used is interesting because in the
inductive step, it is necessary to know the truth of this inequality for two successive
values of n to establish its truth for the following value.

First of all, for n = 1 and 2, we have

a1 = 1 < (7/4)1 = 7/4 and a2 = 3 < (7/4)2 = 49/16

whence the inequality in question holds in these two cases. This provides a basis for
the induction. For the induction step, choose an integer k ≥ 3 and assume that the
inequality is valid for n = 1, 2, . . . , k − 1. Then, in particular,

ak−1 < (7/4)k−1 and ak−2 < (7/4)k−2

By the way in which the Lucas sequence is formed, it follows that

ak = ak−1 + ak−2 < (7/4)k−1 + (7/4)k−2

= (7/4)k−2(7/4 + 1)

= (7/4)k−2(11/4)

< (7/4)k−2(7/4)2 = (7/4)k

Because the inequality is true for n = k whenever it is true for the integers 1, 2, . . . ,

k − 1, we conclude by the second induction principle that an < (7/4)n for all n ≥ 1.

Among other things, this example suggests that if objects are defined inductively,
then mathematical induction is an important tool for establishing the properties of
these objects.

PROBLEMS 1.1

1. Establish the formulas below by mathematical induction:

(a) 1 + 2 + 3 + · · · + n = n(n + 1)

2
for all n ≥ 1.

(b) 1 + 3 + 5 + · · · + (2n − 1) = n2 for all n ≥ 1.

(c) 1 · 2 + 2 · 3 + 3 · 4 + · · · + n(n + 1) = n(n + 1)(n + 2)

3
for all n ≥ 1.
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(d) 12 + 32 + 52 + · · · + (2n − 1)2 = n(2n − 1)(2n + 1)

3
for all n ≥ 1.

(e) 13 + 23 + 33 + · · · + n3 =
[

n(n + 1)

2

]2

for all n ≥ 1.

2. If r �= 1, show that for any positive integer n,

a + ar + ar2 + · · · + arn = a(rn+1 − 1)

r − 1

3. Use the Second Principle of Finite Induction to establish that for all n ≥ 1,

an − 1 = (a − 1)(an−1 + an−2 + an−3 + · · · + a + 1)

[Hint: an+1 − 1 = (a + 1)(an − 1) − a(an−1 − 1).]
4. Prove that the cube of any integer can be written as the difference of two squares. [Hint:

Notice that

n3 = (13 + 23 + · · · + n3) − (13 + 23 + · · · + (n − 1)3).]

5. (a) Find the values of n ≤ 7 for which n! + 1 is a perfect square (it is unknown whether
n! + 1 is a square for any n > 7).

(b) True or false? For positive integers m and n, (mn)! = m!n! and (m + n)! = m! + n!.
6. Prove that n! > n2 for every integer n ≥ 4, whereas n! > n3 for every integer n ≥ 6.
7. Use mathematical induction to derive the following formula for all n ≥ 1:

1(1!) + 2(2!) + 3(3!) + · · · + n(n!) = (n + 1)! − 1

8. (a) Verify that for all n ≥ 1,

2 · 6 · 10 · 14 · · · · · (4n − 2) = (2n)!

n!

(b) Use part (a) to obtain the inequality 2n(n!)2 ≤ (2n)! for all n ≥ 1.
9. Establish the Bernoulli inequality: If 1 + a > 0, then

(1 + a)n ≥ 1 + na

for all n ≥ 1.
10. For all n ≥ 1, prove the following by mathematical induction:

(a)
1

12
+ 1

22
+ 1

32
+ · · · + 1

n2
≤ 2 − 1

n
.

(b)
1

2
+ 2

22
+ 3

23
+ · · · + n

2n
= 2 − n + 2

2n
.

11. Show that the expression (2n)!/2nn! is an integer for all n ≥ 0.
12. Consider the function defined by

T (n) =

⎧⎪⎨
⎪⎩

3n + 1

2
for n odd

n

2
for n even

The 3n + 1 conjecture is the claim that starting from any integer n > 1, the sequence
of iterates T (n), T (T (n)), T (T (T (n))), . . . , eventually reaches the integer 1 and subse-
quently runs through the values 1 and 2. This has been verified for all n ≤ 1016. Confirm
the conjecture in the cases n = 21 and n = 23.
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8 ELEMENTARY NUMBER THEORY

13. Suppose that the numbers an are defined inductively by a1 = 1, a2 = 2, a3 = 3, and
an = an−1 + an−2 + an−3 for all n ≥ 4. Use the Second Principle of Finite Induction to
show that an < 2n for every positive integer n.

14. If the numbers an are defined by a1 = 11, a2 = 21, and an = 3an−1 − 2an−2 for n ≥ 3,
prove that

an = 5 · 2n + 1 n ≥ 1

1.2 THE BINOMIAL THEOREM

Closely connected with the factorial notation are the binomial coefficients ( n
k ). For

any positive integer n and any integer k satisfying 0 ≤ k ≤ n, these are defined by(
n

k

)
= n!

k!(n − k)!

By canceling out either k! or (n − k)!, ( n
k ) can be written as

(
n

k

)
= n(n − 1) · · · (k + 1)

(n − k)!
= n(n − 1) · · · (n − k + 1)

k!

For example, with n = 8 and k = 3, we have(
8

3

)
= 8!

3!5!
= 8 · 7 · 6 · 5 · 4

5!
= 8 · 7 · 6

3!
= 56

Also observe that if k = 0 or k = n, the quantity 0! appears on the right-hand side
of the definition of ( n

k ); because we have taken 0! as 1, these special values of k give

(
n

0

)
=

(
n

n

)
= 1

There are numerous useful identities connecting binomial coefficients. One that we
require here is Pascal’s rule:(

n

k

)
+

(
n

k − 1

)
=

(
n + 1

k

)
1 ≤ k ≤ n

Its proof consists of multiplying the identity

1

k
+ 1

n − k + 1
= n + 1

k(n − k + 1)

by n!/(k − 1)!(n − k)! to obtain

n!

k(k − 1)!(n − k)!
+ n!

(k − 1)!(n − k + 1)(n − k)!

= (n + 1)n!

k(k − 1)!(n − k + 1)(n − k)!
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Falling back on the definition of the factorial function, this says that

n!

k!(n − k)!
+ n!

(k − 1)!(n − k + 1)!
= (n + 1)!

k!(n + 1 − k)!

from which Pascal’s rule follows.
This relation gives rise to a configuration, known as Pascal’s triangle, in which

the binomial coefficient ( n
k ) appears as the (k + 1)th number in the nth row:

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

· · ·
The rule of formation should be clear. The borders of the triangle are composed of
1’s; a number not on the border is the sum of the two numbers nearest it in the row
immediately above.

The so-called binomial theorem is in reality a formula for the complete expansion
of (a + b)n , n ≥ 1, into a sum of powers of a and b. This expression appears with
great frequency in all phases of number theory, and it is well worth our time to look
at it now. By direct multiplication, it is easy to verify that

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4, etc.

The question is how to predict the coefficients. A clue lies in the observation that
the coefficients of these first few expansions form the successive rows of Pascal’s
triangle. This leads us to suspect that the general binomial expansion takes the form

(a + b)n =
(

n

0

)
an +

(
n

1

)
an−1b +

(
n

2

)
an−2b2

+ · · · +
(

n

n − 1

)
abn−1 +

(
n

n

)
bn

or, written more compactly,

(a + b)n =
n∑

k=0

(
n

k

)
an−kb k

Mathematical induction provides the best means for confirming this guess. When
n = 1, the conjectured formula reduces to

(a + b)1 =
1∑

k=0

(
1

k

)
a1−kb k =

(
1

0

)
a1b0 +

(
1

1

)
a0b1 = a + b
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10 ELEMENTARY NUMBER THEORY

which is certainly correct. Assuming that the formula holds for some fixed integer
m, we go on to show that it also must hold for m + 1. The starting point is to notice
that

(a + b)m+1 = a(a + b)m + b(a + b)m

Under the induction hypothesis,

a(a + b)m =
m∑

k=0

(
m

k

)
am−k+1b k

= am+1 +
m∑

k=1

(
m

k

)
am+1−kb k

and

b(a + b)m =
m∑

j=0

(
m

j

)
am− j b j+1

=
m∑

k=1

(
m

k − 1

)
am+1−kb k + bm+1

Upon adding these expressions, we obtain

(a + b)m+1 = am+1 +
m∑

k=1

[(
m

k

)
+

(
m

k − 1

)]
am+1−kb k + bm+1

=
m+1∑
k=0

(
m + 1

k

)
am+1−kb k

which is the formula in the case n = m + 1. This establishes the binomial theorem
by induction.

Before abandoning these ideas, we might remark that the first acceptable for-
mulation of the method of mathematical induction appears in the treatise Traité du
Triangle Arithmetiqué, by the 17th century French mathematician and philosopher
Blaise Pascal. This short work was written in 1653, but not printed until 1665 be-
cause Pascal had withdrawn from mathematics (at the age of 25) to dedicate his
talents to religion. His careful analysis of the properties of the binomial coefficients
helped lay the foundations of probability theory.

PROBLEMS 1.2

1. (a) Derive Newton’s identity

(
n

k

) (
k

r

)
=

(
n

r

) (
n − r

k − r

)
n ≥ k ≥ r ≥ 0
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(b) Use part (a) to express ( n
k ) in terms of its predecessor:

(
n

k

)
= n − k + 1

k

(
n

k − 1

)
n ≥ k ≥ 1

2. If 2 ≤ k ≤ n − 2, show that
(

n

k

)
=

(
n − 2

k − 2

)
+ 2

(
n − 2

k − 1

)
+

(
n − 2

k

)
n ≥ 4

3. For n ≥ 1, derive each of the identities below:

(a)

(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · · +

(
n
n

)
= 2n .

[Hint: Let a = b = 1 in the binomial theorem.]

(b)

(
n
0

)
−

(
n
1

)
+

(
n
2

)
− · · · + (−1)n

(
n
n

)
= 0.

(c)

(
n
1

)
+ 2

(
n
2

)
+ 3

(
n
3

)
+ · · · + n

(
n
n

)
= n2n−1.

[Hint: After expanding n(1 + b)n−1 by the binomial theorem, let b = 1; note also
that

n

(
n − 1

k

)
= (k + 1)

(
n

k + 1

)
.]

(d)

(
n
0

)
+ 2

(
n
1

)
+ 22

(
n
2

)
+ · · · + 2n

(
n
n

)
= 3n .

(e)

(
n
0

)
+

(
n
2

)
+

(
n
4

)
+

(
n
6

)
+ · · ·

=
(

n
1

)
+

(
n
3

)
+

(
n
5

)
+ · · · = 2n−1.

[Hint: Use parts (a) and (b).]

(f)

(
n
0

)
− 1

2

(
n
1

)
+ 1

3

(
n
2

)
− · · · + (−1)n

n + 1

(
n
n

)
= 1

n + 1
.

[Hint: The left-hand side equals

1

n + 1

[(
n + 1

1

)
−

(
n + 1

2

)
+

(
n + 1

3

)
− · · · + (−1)n

(
n + 1
n + 1

)]
.]

4. Prove the following for n ≥ 1:

(a)

(
n
r

)
<

(
n

r + 1

)
if and only if 0 ≤ r <

1

2
(n − 1).

(b)

(
n
r

)
>

(
n

r + 1

)
if and only if n − 1 ≥ r >

1

2
(n − 1).

(c)

(
n
r

)
=

(
n

r + 1

)
if and only if n is an odd integer, and r = 1

2
(n − 1).
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5. (a) For n ≥ 2, prove that(
2

2

)
+

(
3

2

)
+

(
4

2

)
+ · · · +

(
n

2

)
=

(
n + 1

3

)

[Hint: Use induction and Pascal’s rule.]
(b) From part (a), and the relation m2 = 2( m

2 ) + m for m ≥ 2, deduce the formula

12 + 22 + 32 + · · · + n2 = n(n + 1)(2n + 1)

6

(c) Apply the formula in part (a) to obtain a proof that

1 · 2 + 2 · 3 + · · · + n(n + 1) = n(n + 1)(n + 2)

3

[Hint: Observe that (m − 1)m = 2( m
2 ).]

6. Derive the binomial identity(
2

2

)
+

(
4

2

)
+

(
6

2

)
+ · · · +

(
2n

2

)
= n(n + 1)(4n − 1)

6
n ≥ 2

[Hint: For m ≥ 2, ( 2m
2 ) = 2( m

2 ) + m2.]
7. For n ≥ 1, verify that

12 + 32 + 52 + · · · + (2n − 1)2 =
(

2n + 1
3

)

8. Show that, for n ≥ 1, (
2n

n

)
= 1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · 2n
22n

9. Establish the inequality 2n < ( 2n
n ) < 22n , for n > 1.

[Hint: Put x = 2 · 4 · 6 · · · (2n), y = 1 · 3 · 5 · · · (2n − 1), and z = 1 · 2 · 3 · · · n; show
that x > y > z, hence x2 > xy > xz.]

10. The Catalan numbers, defined by

Cn = 1

n + 1

(
2n

n

)
= (2n)!

n!(n + 1)!
n = 0, 1, 2, . . .

form the sequence 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . . . They first appeared in
1838 when Eugène Catalan (1814–1894) showed that there are Cn ways of parenthesizing
a nonassociative product of n + 1 factors. [For instance, when n = 3 there are five ways:
((ab)c)d, (a(bc))d, a((bc)d), a(b(cd)), (ab)(ac).] For n ≥ 1, prove that Cn can be given
inductively by

Cn = 2(2n − 1)

n + 1
Cn−1
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CHAPTER

2
DIVISIBILITY THEORY IN THE INTEGERS

Integral numbers are the fountainhead of all mathematics.
H. MINKOWSKI

2.1 EARLY NUMBER THEORY

Before becoming weighted down with detail, we should say a few words about
the origin of number theory. The theory of numbers is one of the oldest branches
of mathematics; an enthusiast, by stretching a point here and there, could extend
its roots back to a surprisingly remote date. Although it seems probable that the
Greeks were largely indebted to the Babylonians and ancient Egyptians for a core
of information about the properties of the natural numbers, the first rudiments of an
actual theory are generally credited to Pythagoras and his disciples.

Our knowledge of the life of Pythagoras is scanty, and little can be said with any
certainty. According to the best estimates, he was born between 580 and 562 B.C. on
the Aegean island of Samos. It seems that he studied not only in Egypt, but may even
have extended his journeys as far east as Babylonia. When Pythagoras reappeared
after years of wandering, he sought out a favorable place for a school and finally
settled upon Croton, a prosperous Greek settlement on the heel of the Italian boot.
The school concentrated on four mathemata, or subjects of study: arithmetica (arith-
metic, in the sense of number theory, rather than the art of calculating), harmonia
(music), geometria (geometry), and astrologia (astronomy). This fourfold division
of knowledge became known in the Middle Ages as the quadrivium, to which was
added the trivium of logic, grammar, and rhetoric. These seven liberal arts came to
be looked upon as the necessary course of study for an educated person.

13
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14 ELEMENTARY NUMBER THEORY

Pythagoras divided those who attended his lectures into two groups: the Pro-
bationers (or listeners) and the Pythagoreans. After three years in the first class, a
listener could be initiated into the second class, to whom were confided the main
discoveries of the school. The Pythagoreans were a closely knit brotherhood, hold-
ing all worldly goods in common and bound by an oath not to reveal the founder’s
secrets. Legend has it that a talkative Pythagorean was drowned in a shipwreck as
the gods’ punishment for publicly boasting that he had added the dodecahedron to
the number of regular solids enumerated by Pythagoras. For a time, the autocratic
Pythagoreans succeeded in dominating the local government in Croton, but a pop-
ular revolt in 501 B.C. led to the murder of many of its prominent members, and
Pythagoras himself was killed shortly thereafter. Although the political influence of
the Pythagoreans thus was destroyed, they continued to exist for at least two centuries
more as a philosophical and mathematical society. To the end, they remained a secret
order, publishing nothing and, with noble self-denial, ascribing all their discoveries
to the Master.

The Pythagoreans believed that the key to an explanation of the universe lay in
number and form, their general thesis being that “Everything is Number.” (By num-
ber, they meant, of course, a positive integer.) For a rational understanding of nature,
they considered it sufficient to analyze the properties of certain numbers. Pythagoras
himself, we are told “seems to have attached supreme importance to the study of
arithmetic, which he advanced and took out of the realm of commercial utility.”

The Pythagorean doctrine is a curious mixture of cosmic philosophy and number
mysticism, a sort of supernumerology that assigned to everything material or spiritual
a definite integer. Among their writings, we find that 1 represented reason, for reason
could produce only one consistent body of truth; 2 stood for man and 3 for woman;
4 was the Pythagorean symbol for justice, being the first number that is the product
of equals; 5 was identified with marriage, because it is formed by the union of 2 and
3; and so forth. All the even numbers, after the first one, were capable of separation
into other numbers; hence, they were prolific and were considered as feminine and
earthy—and somewhat less highly regarded in general. Being a predominantly male
society, the Pythagoreans classified the odd numbers, after the first two, as masculine
and divine.

Although these speculations about numbers as models of “things” appear friv-
olous today, it must be borne in mind that the intellectuals of the classical Greek
period were largely absorbed in philosophy and that these same men, because they
had such intellectual interests, were the very ones who were engaged in laying the
foundations for mathematics as a system of thought. To Pythagoras and his followers,
mathematics was largely a means to an end, the end being philosophy. Only with
the founding of the School of Alexandria do we enter a new phase in which the
cultivation of mathematics was pursued for its own sake.

It was at Alexandria, not Athens, that a science of numbers divorced from mystic
philosophy first began to develop. For nearly a thousand years, until its destruction
by the Arabs in 641 A.D., Alexandria stood at the cultural and commercial center of
the Hellenistic world. (After the fall of Alexandria, most of its scholars migrated to
Constantinople. During the next 800 years, while formal learning in the West all but
disappeared, this enclave at Constantinople preserved for us the mathematical works
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of the various Greek schools.) The so-called Alexandrian Museum, a forerunner of
the modern university, brought together the leading poets and scholars of the day;
adjacent to it there was established an enormous library, reputed to hold over 700,000
volumes—hand-copied—at its height. Of all the distinguished names connected with
the museum, that of Euclid (fl. c.300 B.C.), founder of the School of Mathematics,
is in a special class. Posterity has come to know him as the author of the Elements,
the oldest Greek treatise on mathematics to reach us in its entirety. The Elements
is a compilation of much of the mathematical knowledge available at that time,
organized into 13 parts or Books, as they are called. The name of Euclid is so often
associated with geometry that one tends to forget that three of the Books—VII, VIII,
and IX—are devoted to number theory.

Euclid’s Elements constitutes one of the great success stories of world literature.
Scarcely any other book save the Bible has been more widely circulated or stud-
ied. Over a thousand editions of it have appeared since the first printed version in
1482, and before its printing, manuscript copies dominated much of the teaching of
mathematics in Western Europe. Unfortunately, no copy of the work has been found
that actually dates from Euclid’s own time; the modern editions are descendants of
a revision prepared by Theon of Alexandria, a commentator of the 4th century A.D.

PROBLEMS 2.1

1. Each of the numbers

1 = 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4, . . .

represents the number of dots that can be arranged evenly in an equilateral triangle:

•
• • •

• • • • • • · · ·
• • • • • • • • • •

This led the ancient Greeks to call a number triangular if it is the sum of consecutive
integers, beginning with 1. Prove the following facts concerning triangular numbers:
(a) A number is triangular if and only if it is of the form n(n + 1)/2 for some n ≥ 1.

(Pythagoras, circa 550 B.C.)
(b) The integer n is a triangular number if and only if 8n + 1 is a perfect square. (Plutarch,

circa 100 A.D.)
(c) The sum of any two consecutive triangular numbers is a perfect square. (Nicomachus,

circa 100 A.D.)
(d) If n is a triangular number, then so are 9n + 1, 25n + 3, and 49n + 6. (Euler, 1775)

2. If tn denotes the nth triangular number, prove that in terms of the binomial coefficients,

tn =
(
n + 1

2

)
n ≥ 1

3. Derive the following formula for the sum of triangular numbers, attributed to the Hindu
mathematician Aryabhata (circa 500 A.D.):

t1 + t2 + t3 + · · · + tn = n(n + 1)(n + 2)

6
n ≥ 1

[Hint: Group the terms on the left-hand side in pairs, noting the identity tk−1 + tk = k2.]
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4. Prove that the square of any odd multiple of 3 is the difference of two triangular numbers;
specifically, that

9(2n + 1)2 = t9n+4 − t3n+1

5. In the sequence of triangular numbers, find the following:
(a) Two triangular numbers whose sum and difference are also triangular numbers.
(b) Three successive triangular numbers whose product is a perfect square.
(c) Three successive triangular numbers whose sum is a perfect square.

6. (a) If the triangular number tn is a perfect square, prove that t4n(n+1) is also a square.
(b) Use part (a) to find three examples of squares that are also triangular numbers.

7. Show that the difference between the squares of two consecutive triangular numbers is
always a cube.

8. Prove that the sum of the reciprocals of the first n triangular numbers is less than 2; that
is,

1

1
+ 1

3
+ 1

6
+ 1

10
+ · · · + 1

tn
< 2

[Hint: Observe that 2
n(n+1) = 2( 1

n − 1
n+1 ).]

9. (a) Establish the identity tx = ty + tz , where

x = n(n + 3)

2
+ 1 y = n + 1 z = n(n + 3)

2

and n ≥ 1, thereby proving that there are infinitely many triangular numbers that are
the sum of two other such numbers.

(b) Find three examples of triangular numbers that are sums of two other triangular
numbers.

10. Each of the numbers

1, 5 = 1 + 4, 12 = 1 + 4 + 7, 22 = 1 + 4 + 7 + 10, . . .

represents the number of dots that can be arranged evenly in a pentagon:

The ancient Greeks called these pentagonal numbers. If pn denotes the nth pentagonal
number, where p1 = 1 and pn = pn−1 + (3n − 2) for n ≥ 2, prove that

pn = n(3n − 1)

2
, n ≥ 1

11. For n ≥ 2, verify the following relations between the pentagonal, square, and triangular
numbers:
(a) pn = tn−1 + n2

(b) pn = 3tn−1 + n = 2tn−1 + tn
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2.2 THE DIVISION ALGORITHM

We have been exposed to relationships between integers for several pages and, as
yet, not a single divisibility property has been derived. It is time to remedy this
situation. One theorem, the Division Algorithm, acts as the foundation stone upon
which our whole development rests. The result is familiar to most of us; roughly, it
asserts that an integer a can be “divided” by a positive integer b in such a way that
the remainder is smaller than is b. The exact statement of this fact is Theorem 2.1.

Theorem 2.1 Division Algorithm. Given integers a and b, with b > 0, there exist
unique integers q and r satisfying

a = qb + r 0 ≤ r < b

The integers q and r are called, respectively, the quotient and remainder in the division
of a by b.

Proof. We begin by proving that the set

S = {a − xb | x an integer; a − xb ≥ 0}
is nonempty. To do this, it suffices to exhibit a value of x making a − xb nonnegative.
Because the integer b ≥ 1, we have | a | b ≥ | a |, and so

a − (−| a |)b = a + | a | b ≥ a + | a | ≥ 0

For the choice x = −| a |, then, a − xb lies in S. This paves the way for an application
of the Well-Ordering Principle (Chapter 1), from which we infer that the set S contains
a smallest integer; call it r . By the definition of S, there exists an integer q satisfying

r = a − qb 0 ≤ r

We argue that r < b. If this were not the case, then r ≥ b and

a − (q + 1)b = (a − qb) − b = r − b ≥ 0

The implication is that the integer a − (q + 1)b has the proper form to belong to the
set S. But a − (q + 1)b = r − b < r , leading to a contradiction of the choice of r as
the smallest member of S. Hence, r < b.

Next we turn to the task of showing the uniqueness of q and r . Suppose that a has
two representations of the desired form, say,

a = qb + r = q ′b + r ′

where 0 ≤ r < b, 0 ≤ r ′ < b. Then r ′ − r = b(q − q ′) and, owing to the fact that the
absolute value of a product is equal to the product of the absolute values,

| r ′ − r | = b | q − q ′ |
Upon adding the two inequalities −b < −r ≤ 0 and 0 ≤ r ′ < b, we obtain
−b < r ′ − r < b or, in equivalent terms, | r ′ − r | < b. Thus, b | q − q ′ | < b, which
yields

0 ≤ | q − q ′ | < 1

Because | q − q ′ | is a nonnegative integer, the only possibility is that | q − q ′ | = 0,
whence q = q ′; this, in turn, gives r = r ′, ending the proof.
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18 ELEMENTARY NUMBER THEORY

A more general version of the Division Algorithm is obtained on replacing the
restriction that b must be positive by the simple requirement that b �= 0.

Corollary. If a and b are integers, with b �= 0, then there exist unique integers q and
r such that

a = qb + r 0 ≤ r < | b |

Proof. It is enough to consider the case in which b is negative. Then | b | > 0, and
Theorem 2.1 produces unique integers q ′ and r for which

a = q ′ | b | + r 0 ≤ r < | b |
Noting that | b | = −b, we may take q = −q ′ to arrive at a = qb + r , with 0 ≤ r < | b |.

To illustrate the Division Algorithm when b < 0, let us take b = −7. Then, for
the choices of a = 1, −2, 61, and −59, we obtain the expressions

1 = 0(−7) + 1

−2 = 1(−7) + 5

61 = (−8)(−7) + 5

−59 = 9(−7) + 4

We wish to focus our attention on the applications of the Division Algorithm,
and not so much on the algorithm itself. As a first illustration, note that with b = 2
the possible remainders are r = 0 and r = 1. When r = 0, the integer a has the form
a = 2q and is called even; when r = 1, the integer a has the form a = 2q + 1 and is
called odd. Now a2 is either of the form (2q)2 = 4k or (2q + 1)2 = 4(q2 + q) + 1 =
4k + 1. The point to be made is that the square of an integer leaves the remainder 0
or 1 upon division by 4.

We also can show the following: the square of any odd integer is of the form
8k + 1. For, by the Division Algorithm, any integer is representable as one of the
four forms: 4q, 4q + 1, 4q + 2, 4q + 3. In this classification, only those integers of
the forms 4q + 1 and 4q + 3 are odd. When the latter are squared, we find that

(4q + 1)2 = 8(2q2 + q) + 1 = 8k + 1

and similarly

(4q + 3)2 = 8(2q2 + 3q + 1) + 1 = 8k + 1

As examples, the square of the odd integer 7 is 72 = 49 = 8 · 6 + 1, and the square
of 13 is 132 = 169 = 8 · 21 + 1.

As these remarks indicate, the advantage of the Division Algorithm is that it
allows us to prove assertions about all the integers by considering only a finite
number of cases. Let us illustrate this with one final example.

Example 2.1. We propose to show that the expression a(a2 + 2)/3 is an integer for
all a ≥ 1. According to the Division Algorithm, every a is of the form 3q, 3q + 1, or
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3q + 2. Assume the first of these cases. Then

a(a2 + 2)

3
= q(9q2 + 2)

which clearly is an integer. Similarly, if a = 3q + 1, then

(3q + 1)((3q + 1)2 + 2)

3
= (3q + 1)(3q2 + 2q + 1)

and a(a2 + 2)/3 is an integer in this instance also. Finally, for a = 3q + 2, we obtain

(3q + 2)((3q + 2)2 + 2)

3
= (3q + 2)(3q2 + 4q + 2)

an integer once more. Consequently, our result is established in all cases.

PROBLEMS 2.2

1. Prove that if a and b are integers, with b > 0, then there exist unique integers q and r
satisfying a = qb + r , where 2b ≤ r < 3b.

2. Show that any integer of the form 6k + 5 is also of the form 3 j + 2, but not conversely.
3. Use the Division Algorithm to establish the following:

(a) The square of any integer is either of the form 3k or 3k + 1.
(b) The cube of any integer has one of the forms: 9k, 9k + 1, or 9k + 8.
(c) The fourth power of any integer is either of the form 5k or 5k + 1.

4. Prove that 3a2 − 1 is never a perfect square.
[Hint: Problem 3(a).]

5. For n ≥ 1, prove that n(n + 1)(2n + 1)/6 is an integer.
[Hint: By the Division Algorithm, n has one of the forms 6k, 6k + 1, . . . , 6k + 5; estab-
lish the result in each of these six cases.]

6. Show that the cube of any integer is of the form 7k or 7k ± 1.
7. Obtain the following version of the Division Algorithm: For integers a and b, with b �= 0,

there exist unique integers q and r that satisfy a = qb + r , where − 1
2 | b | < r ≤ 1

2 | b |.
[Hint: First write a = q ′b + r ′, where 0 ≤ r ′ < | b |. When 0 ≤ r ′ ≤ 1

2 | b |, let r = r ′ and
q = q ′; when 1

2 | b | < r ′ < | b |, let r = r ′ − | b | and q = q ′ + 1 if b > 0 or q = q ′ − 1
if b < 0.]

8. Prove that no integer in the following sequence is a perfect square:

11, 111, 1111, 11111, . . .

[Hint: A typical term 111 · · · 111 can be written as

111 · · · 111 = 111 · · · 108 + 3 = 4k + 3.]

9. Verify that if an integer is simultaneously a square and a cube (as is the case with
64 = 82 = 43), then it must be either of the form 7k or 7k + 1.

10. For n ≥ 1, establish that the integer n(7n2 + 5) is of the form 6k.
11. If n is an odd integer, show that n4 + 4n2 + 11 is of the form 16k.

2.3 THE GREATEST COMMON DIVISOR

Of special significance is the case in which the remainder in the Division Algorithm
turns out to be zero. Let us look into this situation now.
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20 ELEMENTARY NUMBER THEORY

Definition 2.1. An integer b is said to be divisible by an integer a �= 0, in symbols
a | b, if there exists some integer c such that b = ac. We write a � | b to indicate that b
is not divisible by a.

Thus, for example, −12 is divisible by 4, because −12 = 4(−3). However, 10
is not divisible by 3; for there is no integer c that makes the statement 10 = 3c true.

There is other language for expressing the divisibility relation a | b. We could
say that a is a divisor of b, that a is a factor of b, or that b is a multiple of a. Notice
that in Definition 2.1 there is a restriction on the divisor a: whenever the notation
a | b is employed, it is understood that a is different from zero.

If a is a divisor of b, then b is also divisible by −a (indeed, b = ac implies that
b = (−a)(−c)), so that the divisors of an integer always occur in pairs. To find all
the divisors of a given integer, it is sufficient to obtain the positive divisors and then
adjoin to them the corresponding negative integers. For this reason, we shall usually
limit ourselves to a consideration of positive divisors.

It will be helpful to list some immediate consequences of Definition 2.1. (The
reader is again reminded that, although not stated, divisors are assumed to be
nonzero.)

Theorem 2.2. For integers a, b, c, the following hold:

(a) a | 0, 1 | a, a | a.
(b) a | 1 if and only if a = ±1.
(c) If a | b and c | d, then ac | bd .
(d) If a | b and b | c, then a | c.
(e) a | b and b | a if and only if a = ±b.
(f) If a | b and b �= 0, then | a | ≤ | b |.
(g) If a | b and a | c, then a | (bx + cy) for arbitrary integers x and y.

Proof. We shall prove assertions (f) and (g), leaving the other parts as an exercise. If
a | b, then there exists an integer c such that b = ac; also, b �= 0 implies that c �= 0.
Upon taking absolute values, we get | b | = | ac | = | a | | c |. Because c �= 0, it follows
that | c | ≥ 1, whence | b | = | a || c | ≥ | a |.

As regards (g), the relations a | b and a | c ensure that b = ar and c = as for
suitable integers r and s. But then whatever the choice of x and y,

bx + cy = ar x + asy = a(r x + sy)

Because r x + sy is an integer, this says that a | (bx + cy), as desired.

It is worth pointing out that property (g) of Theorem 2.2 extends by induction
to sums of more than two terms. That is, if a | bk for k = 1, 2, . . . , n, then

a | (b1x1 + b2x2 + · · · + bnxn)

for all integers x1, x2, . . . , xn . The few details needed for the proof are so straight-
forward that we omit them.

If a and b are arbitrary integers, then an integer d is said to be a common
divisor of a and b if both d | a and d | b. Because 1 is a divisor of every integer,
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1 is a common divisor of a and b; hence, their set of positive common divisors is
nonempty. Now every integer divides zero, so that if a = b = 0, then every integer
serves as a common divisor of a and b. In this instance, the set of positive common
divisors of a and b is infinite. However, when at least one of a or b is different from
zero, there are only a finite number of positive common divisors. Among these, there
is a largest one, called the greatest common divisor of a and b. We frame this as
Definition 2.2.

Definition 2.2. Let a and b be given integers, with at least one of them different from
zero. The greatest common divisor of a and b, denoted by gcd(a, b), is the positive
integer d satisfying the following:

(a) d | a and d | b.
(b) If c | a and c | b, then c ≤ d.

Example 2.2. The positive divisors of −12 are 1, 2, 3, 4, 6, 12, whereas those of 30
are 1, 2, 3, 5, 6, 10, 15, 30; hence, the positive common divisors of −12 and 30 are 1,
2, 3, 6. Because 6 is the largest of these integers, it follows that gcd(−12, 30) = 6. In
the same way, we can show that

gcd(−5, 5) = 5 gcd(8, 17) = 1 gcd(−8, −36) = 4

The next theorem indicates that gcd(a, b) can be represented as a linear combi-
nation of a and b. (By a linear combination of a and b, we mean an expression of
the form ax + by, where x and y are integers.) This is illustrated by, say,

gcd(−12, 30) = 6 = (−12)2 + 30 · 1

or

gcd(−8, −36) = 4 = (−8)4 + (−36)(−1)

Now for the theorem.

Theorem 2.3. Given integers a and b, not both of which are zero, there exist integers
x and y such that

gcd(a, b) = ax + by

Proof. Consider the set S of all positive linear combinations of a and b:

S = {au + bv | au + bv > 0; u, v integers}
Notice first that S is not empty. For example, if a �= 0, then the integer | a | = au + b · 0
lies in S, where we choose u = 1 or u = −1 according as a is positive or negative.
By virtue of the Well-Ordering Principle, S must contain a smallest element d. Thus,
from the very definition of S, there exist integers x and y for which d = ax + by. We
claim that d = gcd(a, b).
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Taking stock of the Division Algorithm, we can obtain integers q and r such that
a = qd + r , where 0 ≤ r < d. Then r can be written in the form

r = a − qd = a − q(ax + by)

= a(1 − qx) + b(−qy)

If r were positive, then this representation would imply that r is a member of S,
contradicting the fact that d is the least integer in S (recall that r < d). Therefore,
r = 0, and so a = qd, or equivalently d | a. By similar reasoning, d | b, the effect of
which is to make d a common divisor of a and b.

Now if c is an arbitrary positive common divisor of the integers a and b, then part
(g) of Theorem 2.2 allows us to conclude that c | (ax + by); that is, c | d. By part (f) of
the same theorem, c = | c | ≤ | d | = d, so that d is greater than every positive common
divisor of a and b. Piecing the bits of information together, we see that d = gcd(a, b).

It should be noted that the foregoing argument is merely an “existence” proof
and does not provide a practical method for finding the values of x and y. This will
come later.

A perusal of the proof of Theorem 2.3 reveals that the greatest common divisor
of a and b may be described as the smallest positive integer of the form ax + by.
Consider the case in which a = 6 and b = 15. Here, the set S becomes

S = {6(−2) + 15 · 1, 6(−1) + 15 · 1, 6 · 1 + 15 · 0, . . .}
= {3, 9, 6, . . .}

We observe that 3 is the smallest integer in S, whence 3 = gcd(6, 15).
The nature of the members of S appearing in this illustration suggests another

result, which we give in the next corollary.

Corollary. If a and b are given integers, not both zero, then the set

T = {ax + by | x, y are integers}
is precisely the set of all multiples of d = gcd(a, b).

Proof. Because d | a and d | b, we know that d | (ax + by) for all integers x, y. Thus,
every member of T is a multiple of d . Conversely, d may be written as d = ax0 + by0

for suitable integers x0 and y0, so that any multiple nd of d is of the form

nd = n(ax0 + by0) = a(nx0) + b(ny0)

Hence, nd is a linear combination of a and b, and, by definition, lies in T .

It may happen that 1 and −1 are the only common divisors of a given pair of
integers a and b, whence gcd(a, b) = 1. For example:

gcd(2, 5) = gcd(−9, 16) = gcd(−27, −35) = 1

This situation occurs often enough to prompt a definition.

Definition 2.3. Two integers a and b, not both of which are zero, are said to be relatively
prime whenever gcd(a, b) = 1.
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The following theorem characterizes relatively prime integers in terms of linear
combinations.

Theorem 2.4. Let a and b be integers, not both zero. Then a and b are relatively prime
if and only if there exist integers x and y such that 1 = ax + by.

Proof. If a and b are relatively prime so that gcd(a, b) = 1, then Theorem 2.3 guar-
antees the existence of integers x and y satisfying 1 = ax + by. As for the converse,
suppose that 1 = ax + by for some choice of x and y, and that d = gcd(a, b). Because
d | a and d | b, Theorem 2.2 yields d | (ax + by), or d | 1. Inasmuch as d is a positive
integer, this last divisibility condition forces d to equal 1 (part (b) of Theorem 2.2 plays
a role here), and the desired conclusion follows.

This result leads to an observation that is useful in certain situations; namely,

Corollary 1. If gcd(a, b) = d , then gcd(a/d, b/d) = 1.

Proof. Before starting with the proof proper, we should observe that although a/d and
b/d have the appearance of fractions, in fact, they are integers because d is a divisor
both of a and of b. Now, knowing that gcd(a, b) = d , it is possible to find integers x
and y such that d = ax + by. Upon dividing each side of this equation by d , we obtain
the expression

1 =
(a

d

)
x +

(
b

d

)
y

Because a/d and b/d are integers, an appeal to the theorem is legitimate. The conclu-
sion is that a/d and b/d are relatively prime.

For an illustration of the last corollary, let us observe that gcd(−12, 30) = 6 and

gcd(−12/6, 30/6) = gcd(−2, 5) = 1

as it should be.
It is not true, without adding an extra condition, that a | c and b | c together give

ab | c. For instance, 6 | 24 and 8 | 24, but 6 · 8 � | 24. If 6 and 8 were relatively prime,
of course, this situation would not arise. This brings us to Corollary 2.

Corollary 2. If a | c and b | c, with gcd(a, b) = 1, then ab | c.

Proof. Inasmuch as a | c and b | c, integers r and s can be found such that c = ar = bs.
Now the relation gcd(a, b) = 1 allows us to write 1 = ax + by for some choice of
integers x and y. Multiplying the last equation by c, it appears that

c = c · 1 = c(ax + by) = acx + bcy

If the appropriate substitutions are now made on the right-hand side, then

c = a(bs)x + b(ar )y = ab(sx + r y)

or, as a divisibility statement, ab | c.
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Our next result seems mild enough, but is of fundamental importance.

Theorem 2.5 Euclid’s lemma. If a | bc, with gcd(a, b) = 1, then a | c.

Proof. We start again from Theorem 2.3, writing 1 = ax + by, where x and y are
integers. Multiplication of this equation by c produces

c = 1 · c = (ax + by)c = acx + bcy

Because a | ac and a | bc, it follows that a | (acx + bcy), which can be recast as a | c.

If a and b are not relatively prime, then the conclusion of Euclid’s lemma may
fail to hold. Here is a specific example: 12 | 9 · 8, but 12 � | 9 and 12 � | 8.

The subsequent theorem often serves as a definition of gcd(a, b). The advantage
of using it as a definition is that order relationship is not involved. Thus, it may be
used in algebraic systems having no order relation.

Theorem 2.6. Let a, b be integers, not both zero. For a positive integer d ,
d = gcd(a, b) if and only if

(a) d | a and d | b.
(b) Whenever c | a and c | b, then c | d.

Proof. To begin, suppose that d = gcd(a, b). Certainly, d | a and d | b, so that (a)
holds. In light of Theorem 2.3, d is expressible as d = ax + by for some integers x , y.
Thus, if c | a and c | b, then c | (ax + by), or rather c | d . In short, condition (b) holds.
Conversely, let d be any positive integer satisfying the stated conditions. Given any
common divisor c of a and b, we have c | d from hypothesis (b). The implication is
that d ≥ c, and consequently d is the greatest common divisor of a and b.

PROBLEMS 2.3

1. If a | b, show that (−a) | b, a | (−b), and (−a) | (−b).
2. Given integers a, b, c, d, verify the following:

(a) If a | b, then a | bc.
(b) If a | b and a | c, then a2 | bc.
(c) a | b if and only if ac | bc, where c �= 0.
(d) If a | b and c | d, then ac | bd .

3. Prove or disprove: If a | (b + c), then either a | b or a | c.
4. For n ≥ 1, use mathematical induction to establish each of the following divisibility

statements:
(a) 8 | 52n + 7.

[Hint: 52(k+1) + 7 = 52(52k + 7) + (7 − 52 · 7).]
(b) 15 | 24n − 1.
(c) 5 | 33n+1 + 2n+1.
(d) 21 | 4n+1 + 52n−1.
(e) 24 | 2 · 7n + 3 · 5n − 5.

5. Prove that for any integer a, one of the integers a, a + 2, a + 4 is divisible by 3.
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6. For an arbitrary integer a, verify the following:
(a) 2 | a(a + 1), and 3 | a(a + 1)(a + 2).
(b) 3 | a(2a2 + 7).
(c) If a is odd, then 32 | (a2 + 3)(a2 + 7).

7. Prove that if a and b are both odd integers, then 16 | a4 + b4 − 2.
8. Prove the following:

(a) The sum of the squares of two odd integers cannot be a perfect square.
(b) The product of four consecutive integers is 1 less than a perfect square.

9. Establish that the difference of two consecutive cubes is never divisible by 2.
10. For a nonzero integer a, show that gcd(a, 0) = | a |, gcd(a, a) = | a |, and gcd(a, 1) = 1.
11. If a and b are integers, not both of which are zero, verify that

gcd(a, b) = gcd(−a, b) = gcd(a, −b) = gcd(−a, −b)

12. Prove that, for a positive integer n and any integer a, gcd(a, a + n) divides n; hence,
gcd(a, a + 1) = 1.

13. Given integers a and b, prove the following:
(a) There exist integers x and y for which c = ax + by if and only if gcd(a, b) | c.
(b) If there exist integers x and y for which ax + by = gcd(a, b), then gcd(x, y) = 1.

14. For any integer a, show the following:
(a) gcd(2a + 1, 9a + 4) = 1.
(b) gcd(5a + 2, 7a + 3) = 1.
(c) If a is odd, then gcd(3a, 3a + 2) = 1.

15. If a and b are integers, not both of which are zero, prove that gcd(2a − 3b, 4a − 5b)
divides b; hence, gcd(2a + 3, 4a + 5) = 1.

16. Given an odd integer a, establish that

a2 + (a + 2)2 + (a + 4)2 + 1

is divisible by 12.
17. Prove that the expression (3n)!/(3!)n is an integer for all n ≥ 0.
18. Prove: The product of any three consecutive integers is divisible by 6; the product of any

four consecutive integers is divisible by 24; the product of any five consecutive integers
is divisible by 120.
[Hint: See Corollary 2 to Theorem 2.4.]

19. Establish each of the assertions below:
(a) If a is an arbitrary integer, then 6 | a(a2 + 11).
(b) If a is an odd integer, then 24 | a(a2 − 1).

[Hint: The square of an odd integer is of the form 8k + 1.]
(c) If a and b are odd integers, then 8 | (a2 − b2).
(d) If a is an integer not divisible by 2 or 3, then 24 | (a2 + 23).
(e) If a is an arbitrary integer, then 360 | a2(a2 − 1)(a2 − 4).

20. Confirm the following properties of the greatest common divisor:
(a) If gcd(a, b) = 1, and gcd(a, c) = 1, then gcd(a, bc) = 1.

[Hint: Because 1 = ax + by = au + cv for some x , y, u, v ,
1 = (ax + by)(au + cv) = a(aux + cvx + byu) + bc(yv).]

(b) If gcd(a, b) = 1, and c | a, then gcd(b, c) = 1.
(c) If gcd(a, b) = 1, then gcd(ac, b) = gcd(c, b).
(d) If gcd(a, b) = 1, and c | a + b, then gcd(a, c) = gcd(b, c) = 1.

[Hint: Let d = gcd(a, c). Then d | a, d | c implies that d | (a + b) − a, or d | b.]
(e) If gcd(a, b) = 1, d | ac, and d | bc, then d | c.
(f ) If gcd(a, b) = 1, then gcd(a2, b2) = 1.

[Hint: First show that gcd(a, b2) = gcd(a2, b) = 1.]
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21. (a) Prove that if d | n, then 2d − 1 | 2n − 1.
[Hint: Use the identity

xk − 1 = (x − 1)(xk−1 + xk−2 + · · · + x + 1).]

(b) Verify that 235 − 1 is divisible by 31 and 127.
22. Let tn denote the nth triangular number. For what values of n does tn divide the sum

t1 + t2 + · · · + tn?
[Hint: See Problem 1(c), Section 1.1.]

23. If a | bc, show that a | gcd(a, b) gcd(a, c).

2.4 THE EUCLIDEAN ALGORITHM

The greatest common divisor of two integers can be found by listing all their pos-
itive divisors and choosing the largest one common to each; but this is cumber-
some for large numbers. A more efficient process, involving repeated application
of the Division Algorithm, is given in the seventh book of the Elements. Although
there is historical evidence that this method predates Euclid, today it is referred to
as the Euclidean Algorithm.

The Euclidean Algorithm may be described as follows: Let a and b be two inte-
gers whose greatest common divisor is desired. Because gcd(| a |, | b |) = gcd(a, b),
there is no harm in assuming that a ≥ b > 0. The first step is to apply the Division
Algorithm to a and b to get

a = q1b + r1 0 ≤ r1 < b

If it happens that r1 = 0, then b | a and gcd(a, b) = b. When r1 �= 0, divide b by r1

to produce integers q2 and r2 satisfying

b = q2r1 + r2 0 ≤ r2 < r1

If r2 = 0, then we stop; otherwise, proceed as before to obtain

r1 = q3r2 + r3 0 ≤ r3 < r2

This division process continues until some zero remainder appears, say, at the
(n + 1)th stage where rn−1 is divided by rn (a zero remainder occurs sooner or
later because the decreasing sequence b > r1 > r2 > · · · ≥ 0 cannot contain more
than b integers).

The result is the following system of equations:

a = q1b + r1 0 < r1 < b

b = q2r1 + r2 0 < r2 < r1

r1 = q3r2 + r3 0 < r3 < r2

...

rn−2 = qnrn−1 + rn 0 < rn < rn−1

rn−1 = qn+1rn + 0

We argue that rn , the last nonzero remainder that appears in this manner, is equal to
gcd(a, b). Our proof is based on the lemma below.

Lemma. If a = qb + r , then gcd(a, b) = gcd(b, r ).
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Proof. If d = gcd(a, b), then the relations d | a and d | b together imply that
d | (a − qb), or d | r . Thus, d is a common divisor of both b and r . On the other
hand, if c is an arbitrary common divisor of b and r , then c | (qb + r ), whence
c | a. This makes c a common divisor of a and b, so that c ≤ d. It now follows from
the definition of gcd(b, r ) that d = gcd(b, r ).

Using the result of this lemma, we simply work down the displayed system of
equations, obtaining

gcd(a, b) = gcd(b, r1) = · · · = gcd(rn−1, rn) = gcd(rn, 0) = rn

as claimed.
Theorem 2.3 asserts that gcd(a, b) can be expressed in the form ax + by, but the

proof of the theorem gives no hint as to how to determine the integers x and y. For
this, we fall back on the Euclidean Algorithm. Starting with the next-to-last equation
arising from the algorithm, we write

rn = rn−2 − qnrn−1

Now solve the preceding equation in the algorithm for rn−1 and substitute to obtain

rn = rn−2 − qn(rn−3 − qn−1rn−2)

= (1 + qnqn−1)rn−2 + (−qn)rn−3

This represents rn as a linear combination of rn−2 and rn−3. Continuing backward
through the system of equations, we successively eliminate the remainders rn−1,
rn−2, . . . , r2, r1 until a stage is reached where rn = gcd(a, b) is expressed as a linear
combination of a and b.

Example 2.3. Let us see how the Euclidean Algorithm works in a concrete case
by calculating, say, gcd(12378, 3054). The appropriate applications of the Division
Algorithm produce the equations

12378 = 4 · 3054 + 162

3054 = 18 · 162 + 138

162 = 1 · 138 + 24

138 = 5 · 24 + 18

24 = 1 · 18 + 6

18 = 3 · 6 + 0

Our previous discussion tells us that the last nonzero remainder appearing in these
equations, namely, the integer 6, is the greatest common divisor of 12378 and 3054:

6 = gcd(12378, 3054)

To represent 6 as a linear combination of the integers 12378 and 3054, we start with
the next-to-last of the displayed equations and successively eliminate the remainders
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18, 24, 138, and 162:

6 = 24 − 18

= 24 − (138 − 5 · 24)

= 6 · 24 − 138

= 6(162 − 138) − 138

= 6 · 162 − 7 · 138

= 6 · 162 − 7(3054 − 18 · 162)

= 132 · 162 − 7 · 3054

= 132(12378 − 4 · 3054) − 7 · 3054

= 132 · 12378 + (−535)3054

Thus, we have

6 = gcd(12378, 3054) = 12378x + 3054y

where x = 132 and y = −535. Note that this is not the only way to express the integer
6 as a linear combination of 12378 and 3054; among other possibilities, we could add
and subtract 3054 · 12378 to get

6 = (132 + 3054)12378 + (−535 − 12378)3054

= 3186 · 12378 + (−12913)3054

The French mathematician Gabriel Lamé (1795–1870) proved that the number
of steps required in the Euclidean Algorithm is at most five times the number of
digits in the smaller integer. In Example 2.3, the smaller integer (namely, 3054)
has four digits, so that the total number of divisions cannot be greater than 20; in
actuality only six divisions were needed. Another observation of interest is that for
each n > 0, it is possible to find integers an and bn such that exactly n divisions are
required to compute gcd(an, bn) by the Euclidean Algorithm. We shall prove this
fact in Chapter 14.

One more remark is necessary. The number of steps in the Euclidean Algorithm
usually can be reduced by selecting remainders rk+1 such that | rk+1 | < rk/2, that is,
by working with least absolute remainders in the divisions. Thus, repeating Example
2.3, it is more efficient to write

12378 = 4 · 3054 + 162

3054 = 19 · 162 − 24

162 = 7 · 24 − 6

24 = (−4)(−6) + 0

As evidenced by this set of equations, this scheme is apt to produce the negative of
the value of the greatest common divisor of two integers (the last nonzero remainder
being −6), rather than the greatest common divisor itself.

An important consequence of the Euclidean Algorithm is the following theorem.

Theorem 2.7. If k > 0, then gcd(ka, kb) = k gcd(a, b).
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Proof. If each of the equations appearing in the Euclidean Algorithm for a and b (see
page 28) is multiplied by k, we obtain

ak = q1(bk) + r1k 0 < r1k < bk

bk = q2(r1k) + r2k 0 < r2k < r1k

...

rn−2k = qn(rn−1k) + rnk 0 < rnk < rn−1k

rn−1k = qn+1(rnk) + 0

But this is clearly the Euclidean Algorithm applied to the integers ak and bk, so that
their greatest common divisor is the last nonzero remainder rnk; that is,

gcd(ka, kb) = rnk = k gcd(a, b)

as stated in the theorem.

Corollary. For any integer k �= 0, gcd(ka, kb) = | k | gcd(a, b).

Proof. It suffices to consider the case in which k < 0. Then −k = | k | > 0 and, by
Theorem 2.7,

gcd(ak, bk) = gcd(−ak, −bk)

= gcd(a | k|, b | k|)
= | k | gcd(a, b)

An alternate proof of Theorem 2.7 runs very quickly as follows: gcd(ak, bk) is
the smallest positive integer of the form (ak)x + (bk)y, which, in turn, is equal to
k times the smallest positive integer of the form ax + by; the latter value is equal to
k gcd(a, b).

By way of illustrating Theorem 2.7, we see that

gcd(12, 30) = 3 gcd(4, 10) = 3 · 2 gcd(2, 5) = 6 · 1 = 6

There is a concept parallel to that of the greatest common divisor of two integers,
known as their least common multiple; but we shall not have much occasion to make
use of it. An integer c is said to be a common multiple of two nonzero integers a
and b whenever a | c and b | c. Evidently, zero is a common multiple of a and b. To
see there exist common multiples that are not trivial, just note that the products ab
and −(ab) are both common multiples of a and b, and one of these is positive. By
the Well-Ordering Principle, the set of positive common multiples of a and b must
contain a smallest integer; we call it the least common multiple of a and b.

For the record, here is the official definition.

Definition 2.4. The least common multiple of two nonzero integers a and b, denoted
by lcm(a, b), is the positive integer m satisfying the following:

(a) a | m and b | m.
(b) If a | c and b | c, with c > 0, then m ≤ c.
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As an example, the positive common multiples of the integers −12 and 30 are
60, 120, 180, . . . ; hence, 1cm(−12, 30) = 60.

The following remark is clear from our discussion: given nonzero integers a
and b, lcm(a, b) always exists and lcm(a, b) ≤ | ab |.

We lack a relationship between the ideas of greatest common divisor and least
common multiple. This gap is filled by Theorem 2.8.

Theorem 2.8. For positive integers a and b

gcd(a, b) lcm(a, b) = ab

Proof. To begin, put d = gcd(a, b) and write a = dr , b = ds for integers r and s. If
m = ab/d, then m = as = rb, the effect of which is to make m a (positive) common
multiple of a and b.

Now let c be any positive integer that is a common multiple of a and b; say,
for definiteness, c = au = bv . As we know, there exist integers x and y satisfying
d = ax + by. In consequence,

c

m
= cd

ab
= c(ax + by)

ab
=

( c

b

)
x +

( c

a

)
y = vx + uy

This equation states that m | c, allowing us to conclude that m ≤ c. Thus, in accordance
with Definition 2.4, m = lcm(a, b); that is,

lcm(a, b) = ab

d
= ab

gcd(a, b)

which is what we started out to prove.

Theorem 2.8 has a corollary that is worth a separate statement.

Corollary. For any choice of positive integers a and b, lcm(a, b) = ab if and only if
gcd(a, b) = 1.

Perhaps the chief virtue of Theorem 2.8 is that it makes the calculation of the
least common multiple of two integers dependent on the value of their greatest
common divisor—which, in turn, can be calculated from the Euclidean Algorithm.
When considering the positive integers 3054 and 12378, for instance, we found that
gcd(3054, 12378) = 6; whence,

lcm(3054, 12378) = 3054 · 12378

6
= 6300402

Before moving on to other matters, let us observe that the notion of greatest
common divisor can be extended to more than two integers in an obvious way. In the
case of three integers, a, b, c, not all zero, gcd(a, b, c) is defined to be the positive
integer d having the following properties:

(a) d is a divisor of each of a, b, c.

(b) If e divides the integers a, b, c, then e ≤ d.
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We cite two examples:

gcd(39, 42, 54) = 3 and gcd(49, 210, 350) = 7

The reader is cautioned that it is possible for three integers to be relatively prime as
a triple (in other words, gcd(a, b, c) = 1), yet not relatively prime in pairs; this is
brought out by the integers 6, 10, and 15.

PROBLEMS 2.4

1. Find gcd(143, 227), gcd(306, 657), and gcd(272, 1479).
2. Use the Euclidean Algorithm to obtain integers x and y satisfying the following:

(a) gcd(56, 72) = 56x + 72y.
(b) gcd(24, 138) = 24x + 138y.
(c) gcd(119, 272) = 119x + 272y.
(d) gcd(1769, 2378) = 1769x + 2378y.

3. Prove that if d is a common divisor of a and b, then d = gcd(a, b) if and only if
gcd(a/d, b/d) = 1.
[Hint: Use Theorem 2.7.]

4. Assuming that gcd(a, b) = 1, prove the following:
(a) gcd(a + b, a − b) = 1 or 2.

[Hint: Let d = gcd(a + b, a − b) and show that d | 2a, d | 2b, and thus that
d ≤ gcd(2a, 2b) = 2 gcd(a, b).]

(b) gcd(2a + b, a + 2b) = 1 or 3.
(c) gcd(a + b, a2 + b2) = 1 or 2.

[Hint: a2 + b2 = (a + b)(a − b) + 2b2.]
(d) gcd(a + b, a2 − ab + b2) = 1 or 3.

[Hint: a2 − ab + b2 = (a + b)2 − 3ab.]
5. For n ≥ 1, and positive integers a, b, show the following:

(a) If gcd(a, b) = 1, then gcd(an, bn) = 1.
[Hint: See Problem 20(a), Section 2.2.]

(b) The relation an | bn implies that a | b.
[Hint: Put d = gcd(a, b) and write a = rd , b = sd , where gcd(r, s) = 1. By part (a),
gcd(rn, sn) = 1. Show that r = 1, whence a = d.]

6. Prove that if gcd(a, b) = 1, then gcd(a + b, ab) = 1.
7. For nonzero integers a and b, verify that the following conditions are equivalent:

(a) a | b.
(b) gcd(a, b) = | a |.
(c) lcm(a, b) = | b |.

8. Find lcm(143, 227), lcm(306, 657), and lcm(272, 1479).
9. Prove that the greatest common divisor of two positive integers divides their least common

multiple.
10. Given nonzero integers a and b, establish the following facts concerning lcm(a, b):

(a) gcd(a, b) = lcm(a, b) if and only if a = ±b.
(b) If k > 0, then lcm(ka, kb) = k lcm(a, b).
(c) If m is any common multiple of a and b, then lcm(a, b) | m.

[Hint: Put t = lcm(a, b) and use the Division Algorithm to write m = qt + r , where
0 ≤ r < t . Show that r is a common multiple of a and b.]

11. Let a, b, c be integers, no two of which are zero, and d = gcd(a, b, c). Show that

d = gcd(gcd(a, b), c) = gcd(a, gcd(b, c)) = gcd(gcd(a, c), b)
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12. Find integers x , y, z satisfying

gcd(198, 288, 512) = 198x + 288y + 512z

[Hint: Put d = gcd(198, 288). Because gcd(198, 288, 512) = gcd(d, 512), first find
integers u and v for which gcd(d, 512) = du + 512v .]

2.5 THE DIOPHANTINE EQUATION ax + by = c

We now change focus somewhat and take up the study of Diophantine equations.
The name honors the mathematician Diophantus, who initiated the study of such
equations. Practically nothing is known of Diophantus as an individual, save that
he lived in Alexandria sometime around 250 A.D. The only positive evidence as to
the date of his activity is that the Bishop of Laodicea, who began his episcopate in
270, dedicated a book on Egyptian computation to his friend Diophantus. Although
Diophantus’s works were written in Greek and he displayed the Greek genius for the-
oretical abstraction, he was most likely a Hellenized Babylonian. The only personal
particulars we have of his career come from the wording of an epigram-problem
(apparently dating from the 4th century): his boyhood lasted 1/6 of his life; his beard
grew after 1/12 more; after 1/7 more he married, and his son was born 5 years later;
the son lived to half his father’s age and the father died 4 years after his son. If x
was the age at which Diophantus died, these data lead to the equation

1

6
x + 1

12
x + 1

7
x + 5 + 1

2
x + 4 = x

with solution x = 84. Thus, he must have reached an age of 84, but in what year or
even in what century is not certain.

The great work upon which the reputation of Diophantus rests is his Arithmetica,
which may be described as the earliest treatise on algebra. Only six books of the
original thirteen have been preserved. It is in the Arithmetica that we find the first
systematic use of mathematical notation, although the signs employed are of the
nature of abbreviations for words rather than algebraic symbols in the sense with
which we use them today. Special symbols are introduced to represent frequently
occurring concepts, such as the unknown quantity in an equation and the different
powers of the unknown up to the sixth power; Diophantus also had a symbol to
express subtraction, and another for equality.

The part of the Arithmetica that has come down to us consists of some 200
problems, which we could now express as equations, together with their worked-
out solutions in specific numbers. Considerable attention was devoted to problems
involving squares or cubes. Even for problems with infinitely many solutions, Dio-
phantus was content with finding just one. Solutions were usually given in terms
of positive rational numbers, sometimes admitting positive integers; there was no
notion at that time of negative numbers as mathematical entities.

Although the Arithmetica does not fall into the realm of number theory, which
involves properties of the integers, it nevertheless gave great impetus to subsequent
European development of the subject. In the mid-17th century, the French mathe-
matician Pierre de Fermat acquired a Latin translation of the rediscovered books of
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Diophantus’s treatise. Fermat embarked on a careful study of its solution techniques,
looking for integral solutions to replace the rational ones of Diophantus and opening
up new paths at which the Arithmetica only hinted. As an example, one problem
asked the following: find four numbers such that the product of any two, increased
by 1, is a square. Diophantus’s methods had led him to the set 1

16 , 33
16 , 68

16 , 105
16 ; but

Fermat produced the four positive integers 1, 3, 8, 120. (Another set is 3, 8, 21,
2081.)

The Arithmetica became a treasure trove for later number theorists. Through
the years, mathematicians have been intrigued by such problems, extending and
generalizing them in one way and another. Consider, for instance, Diophantus’s
problem of finding three numbers such that the product of any two, increased by
the sum of the same two, is a square. In the 18th century, Leonhard Euler treated
the same problem with four numbers; and recently a set of five numbers with the
indicated property has been found. To this day the Arithmetica remains a source of
inspiration to number theorists.

It is customary to apply the term Diophantine equation to any equation in one or
more unknowns that is to be solved in the integers. The simplest type of Diophantine
equation that we shall consider is the linear Diophantine equation in two unknowns:

ax + by = c

where a, b, c are given integers and a, b are not both zero. A solution of this equation
is a pair of integers x0, y0 that, when substituted into the equation, satisfy it; that is,
we ask that ax0 + by0 = c. Curiously enough, the linear equation does not appear
in the extant works of Diophantus (the theory required for its solution is to be found
in Euclid’s Elements), possibly because he viewed it as trivial; most of his problems
deal with finding squares or cubes with certain properties.

A given linear Diophantine equation can have a number of solutions, as is the
case with 3x + 6y = 18, where

3 · 4 + 6 · 1 = 18

3(−6) + 6 · 6 = 18

3 · 10 + 6(−2) = 18

By contrast, there is no solution to the equation 2x + 10y = 17. Indeed, the left-hand
side is an even integer whatever the choice of x and y, whereas the right-hand side is
not. Faced with this, it is reasonable to enquire about the circumstances under which
a solution is possible and, when a solution does exist, whether we can determine all
solutions explicitly.

The condition for solvability is easy to state: the linear Diophantine equation
ax + by = c admits a solution if and only if d | c, where d = gcd(a, b). We know that
there are integers r and s for which a = dr and b = ds. If a solution of ax + by = c
exists, so that ax0 + by0 = c for suitable x0 and y0, then

c = ax0 + by0 = dr x0 + dsy0 = d(r x0 + sy0)

which simply says that d | c. Conversely, assume that d | c, say c = dt . Using
Theorem 2.3, integers x0 and y0 can be found satisfying d = ax0 + by0. When
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this relation is multiplied by t , we get

c = dt = (ax0 + by0)t = a(t x0) + b(t y0)

Hence, the Diophantine equation ax + by = c has x = t x0 and y = t y0 as a partic-
ular solution. This proves part of our next theorem.

Theorem 2.9. The linear Diophantine equation ax + by = c has a solution if and only
if d | c, where d = gcd(a, b). If x0, y0 is any particular solution of this equation, then
all other solutions are given by

x = x0 +
(

b

d

)
t y = y0 −

(a

d

)
t

where t is an arbitrary integer.

Proof. To establish the second assertion of the theorem, let us suppose that a solution
x0, y0 of the given equation is known. If x ′, y′ is any other solution, then

ax0 + by0 = c = ax ′ + by′

which is equivalent to

a(x ′ − x0) = b(y0 − y′)

By the corollary to Theorem 2.4, there exist relatively prime integers r and s such that
a = dr , b = ds. Substituting these values into the last-written equation and canceling
the common factor d, we find that

r (x ′ − x0) = s(y0 − y′)

The situation is now this: r | s(y0 − y′), with gcd(r, s) = 1. Using Euclid’s lemma, it
must be the case that r | (y0 − y′); or, in other words, y0 − y′ = r t for some integer t .
Substituting, we obtain

x ′ − x0 = st

This leads us to the formulas

x ′ = x0 + st = x0 +
(

b

d

)
t

y′ = y0 − r t = y0 −
(a

d

)
t

It is easy to see that these values satisfy the Diophantine equation, regardless of the
choice of the integer t ; for

ax ′ + by′ = a

[
x0 +

(
b

d

)
t

]
+ b

[
y0 −

(a

d

)
t
]

= (ax0 + by0) +
(

ab

d
− ab

d

)
t

= c + 0 · t

= c

Thus, there are an infinite number of solutions of the given equation, one for each value
of t .
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Example 2.4. Consider the linear Diophantine equation

172x + 20y = 1000

Applying the Euclidean’s Algorithm to the evaluation of gcd(172, 20), we find that

172 = 8 · 20 + 12

20 = 1 · 12 + 8

12 = 1 · 8 + 4

8 = 2 · 4

whence gcd(172, 20) = 4. Because 4 | 1000, a solution to this equation exists. To obtain
the integer 4 as a linear combination of 172 and 20, we work backward through the
previous calculations, as follows:

4 = 12 − 8

= 12 − (20 − 12)

= 2 · 12 − 20

= 2(172 − 8 · 20) − 20

= 2 · 172 + (−17)20

Upon multiplying this relation by 250, we arrive at

1000 = 250 · 4 = 250[2 · 172 + (−17)20]

= 500 · 172 + (−4250)20

so that x = 500 and y = −4250 provide one solution to the Diophantine equation in
question. All other solutions are expressed by

x = 500 + (20/4)t = 500 + 5t

y = −4250 − (172/4)t = −4250 − 43t

for some integer t .
A little further effort produces the solutions in the positive integers, if any happen

to exist. For this, t must be chosen to satisfy simultaneously the inequalities

5t + 500 > 0 − 43t − 4250 > 0

or, what amounts to the same thing,

−98
36

43
> t > −100

Because t must be an integer, we are forced to conclude that t = −99. Thus, our
Diophantine equation has a unique positive solution x = 5, y = 7 corresponding to
the value t = −99.

It might be helpful to record the form that Theorem 2.9 takes when the coeffi-
cients are relatively prime integers.

Corollary. If gcd(a, b) = 1 and if x0, y0 is a particular solution of the linear Diophan-
tine equation ax + by = c, then all solutions are given by

x = x0 + bt y = y0 − at

for integral values of t .
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Here is an example. The equation 5x + 22y = 18 has x0 = 8, y0 = −1 as one
solution; from the corollary, a complete solution is given by x = 8 + 22t ,
y = −1 − 5t for arbitrary t .

Diophantine equations frequently arise when solving certain types of traditional
word problems, as evidenced by Example 2.5.

Example 2.5. A customer bought a dozen pieces of fruit, apples and oranges, for
$1.32. If an apple costs 3 cents more than an orange and more apples than oranges
were purchased, how many pieces of each kind were bought?

To set up this problem as a Diophantine equation, let x be the number of apples
and y be the number of oranges purchased; in addition, let z represent the cost (in
cents) of an orange. Then the conditions of the problem lead to

(z + 3)x + zy = 132

or equivalently

3x + (x + y)z = 132

Because x + y = 12, the previous equation may be replaced by

3x + 12z = 132

which, in turn, simplifies to x + 4z = 44.
Stripped of inessentials, the object is to find integers x and z satisfying the

Diophantine equation

x + 4z = 44 (1)

Inasmuch as gcd (1, 4) = 1 is a divisor of 44, there is a solution to this equation. Upon
multiplying the relation 1 = 1(−3) + 4 · 1 by 44 to get

44 = 1(−132) + 4 · 44

it follows that x0 = −132, z0 = 44 serves as one solution. All other solutions of
Eq. (1) are of the form

x = −132 + 4t z = 44 − t

where t is an integer.
Not all of the choices for t furnish solutions to the original problem. Only values

of t that ensure 12 ≥ x > 6 should be considered. This requires obtaining those values
of t such that

12 ≥ −132 + 4t > 6

Now, 12 ≥ −132 + 4t implies that t ≤ 36, whereas −132 + 4t > 6 gives t > 34 1
2 .

The only integral values of t to satisfy both inequalities are t = 35 and t = 36. Thus,
there are two possible purchases: a dozen apples costing 11 cents apiece (the case
where t = 36), or 8 apples at 12 cents each and 4 oranges at 9 cents each (the case
where t = 35).

Linear indeterminate problems such as these have a long history, occurring as
early as the 1st century in the Chinese mathematical literature. Owing to a lack of
algebraic symbolism, they often appeared in the guise of rhetorical puzzles or riddles.
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The contents of the Mathematical Classic of Chang Ch′ iu-chien (6th century) attest
to the algebraic abilities of the Chinese scholars. This elaborate treatise contains one
of the most famous problems in indeterminate equations, in the sense of transmission
to other societies—the problem of the “hundred fowls.” The problem states:

If a cock is worth 5 coins, a hen 3 coins, and three chicks together 1 coin, how many
cocks, hens, and chicks, totaling 100, can be bought for 100 coins?

In terms of equations, the problem would be written (if x equals the number of cocks,
y the number of hens, z the number of chicks):

5x + 3y + 1

3
z = 100 x + y + z = 100

Eliminating one of the unknowns, we are left with a linear Diophantine equation
in the two other unknowns. Specifically, because the quantity z = 100 − x − y, we
have 5x + 3y + 1

3 (100 − x − y) = 100, or

7x + 4y = 100

This equation has the general solution x = 4t , y = 25 − 7t , so that z = 75 + 3t ,
where t is an arbitrary integer. Chang himself gave several answers:

x = 4 y = 18 z = 78

x = 8 y = 11 z = 81

x = 12 y = 4 z = 84

A little further effort produces all solutions in the positive integers. For this, t must
be chosen to satisfy simultaneously the inequalities

4t > 0 25 − 7t > 0 75 + 3t > 0

The last two of these are equivalent to the requirement −25 < t < 3 4
7 . Because t

must have a positive value, we conclude that t = 1, 2, 3, leading to precisely the
values Chang obtained.

PROBLEMS 2.5

1. Which of the following Diophantine equations cannot be solved?
(a) 6x + 51y = 22.
(b) 33x + 14y = 115.
(c) 14x + 35y = 93.

2. Determine all solutions in the integers of the following Diophantine equations:
(a) 56x + 72y = 40.
(b) 24x + 138y = 18.
(c) 221x + 35y = 11.

3. Determine all solutions in the positive integers of the following Diophantine equations:
(a) 18x + 5y = 48.
(b) 54x + 21y = 906.
(c) 123x + 360y = 99.
(d) 158x − 57y = 7.
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4. If a and b are relatively prime positive integers, prove that the Diophantine equation
ax − by = c has infinitely many solutions in the positive integers.
[Hint: There exist integers x0 and y0 such that ax0 + by0 = c. For any integer t ,
which is larger than both | x0 | /b and | y0 | /a, a positive solution of the given equation is
x = x0 + bt , y = −(y0 − at).]

5. (a) A man has $4.55 in change composed entirely of dimes and quarters. What are the
maximum and minimum number of coins that he can have? Is it possible for the
number of dimes to equal the number of quarters?

(b) The neighborhood theater charges $1.80 for adult admissions and $.75 for children.
On a particular evening the total receipts were $90. Assuming that more adults than
children were present, how many people attended?

(c) A certain number of sixes and nines is added to give a sum of 126; if the number of
sixes and nines is interchanged, the new sum is 114. How many of each were there
originally?

6. A farmer purchased 100 head of livestock for a total cost of $4000. Prices were as follow:
calves, $120 each; lambs, $50 each; piglets, $25 each. If the farmer obtained at least one
animal of each type, how many of each did he buy?

7. When Mr. Smith cashed a check at his bank, the teller mistook the number of cents for
the number of dollars and vice versa. Unaware of this, Mr. Smith spent 68 cents and then
noticed to his surprise that he had twice the amount of the original check. Determine the
smallest value for which the check could have been written.
[Hint: If x denotes the number of dollars and y the number of cents in the check, then
100y + x − 68 = 2(100x + y).]

8. Solve each of the puzzle-problems below:
(a) Alcuin of York, 775. One hundred bushels of grain are distributed among 100 persons

in such a way that each man receives 3 bushels, each woman 2 bushels, and each child
1
2 bushel. How many men, women, and children are there?

(b) Mahaviracarya, 850. There were 63 equal piles of plantain fruit put together and 7
single fruits. They were divided evenly among 23 travelers. What is the number of
fruits in each pile?
[Hint: Consider the Diophantine equation 63x + 7 = 23y.]

(c) Yen Kung, 1372. We have an unknown number of coins. If you make 77 strings of
them, you are 50 coins short; but if you make 78 strings, it is exact. How many coins
are there?
[Hint: If N is the number of coins, then N = 77x + 27 = 78y for integers
x and y.]

(d) Christoff Rudolff, 1526. Find the number of men, women, and children in a company
of 20 persons if together they pay 20 coins, each man paying 3, each woman 2, and
each child 1

2 .
(e) Euler, 1770. Divide 100 into two summands such that one is divisible by 7 and the

other by 11.
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CHAPTER

3
PRIMES AND THEIR DISTRIBUTION

Mighty are numbers, joined with art resistless.
EURIPIDES

3.1 THE FUNDAMENTAL THEOREM OF ARITHMETIC

Essential to everything discussed herein—in fact, essential to every aspect of number
theory—is the notion of a prime number. We have previously observed that any
integer a > 1 is divisible by ±1 and ± a; if these exhaust the divisors of a, then it
is said to be a prime number. In Definition 3.1 we state this somewhat differently.

Definition 3.1. An integer p > 1 is called a prime number, or simply a prime, if its
only positive divisors are 1 and p. An integer greater than 1 that is not a prime is termed
composite.

Among the first 10 positive integers, 2, 3, 5, 7 are primes and 4, 6, 8, 9, 10 are
composite numbers. Note that the integer 2 is the only even prime, and according to
our definition the integer 1 plays a special role, being neither prime nor composite.

In the rest of this book, the letters p and q will be reserved, so far as is possible,
for primes.

Proposition 14 of Book IX of Euclid’s Elements embodies the result that later
became known as the Fundamental Theorem of Arithmetic, namely, that every inte-
ger greater than 1 can, except for the order of the factors, be represented as a product
of primes in one and only one way. To quote the proposition itself: “If a number be
the least that is measured by prime numbers, it will not be measured by any other

39
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prime except those originally measuring it.” Because every number a > 1 is either
a prime or, by the Fundamental Theorem, can be broken down into unique prime
factors and no further, the primes serve as the building blocks from which all other
integers can be made. Accordingly, the prime numbers have intrigued mathemati-
cians through the ages, and although a number of remarkable theorems relating to
their distribution in the sequence of positive integers have been proved, even more
remarkable is what remains unproved. The open questions can be counted among
the outstanding unsolved problems in all of mathematics.

To begin on a simpler note, we observe that the prime 3 divides the integer 36,
where 36 may be written as any one of the products

6 · 6 = 9 · 4 = 12 · 3 = 18 · 2

In each instance, 3 divides at least one of the factors involved in the product. This is
typical of the general situation, the precise result being Theorem 3.1.

Theorem 3.1. If p is a prime and p | ab, then p | a or p | b.

Proof. If p | a, then we need go no further, so let us assume that p � | a. Because
the only positive divisors of p are 1 and p itself, this implies that gcd(p, a) = 1. (In
general, gcd(p, a) = p or gcd(p, a) = 1 according as p | a or p � | a.) Hence, citing
Euclid’s lemma, we get p | b.

This theorem easily extends to products of more than two terms.

Corollary 1. If p is a prime and p | a1a2 · · · an , then p | ak for some k, where 1 ≤ k ≤ n.

Proof. We proceed by induction on n, the number of factors. When n = 1, the stated
conclusion obviously holds; whereas when n = 2, the result is the content of Theorem
3.1. Suppose, as the induction hypothesis, that n > 2 and that whenever p divides a
product of less than n factors, it divides at least one of the factors. Now p | a1a2 · · · an .

From Theorem 3.1, either p | an or p | a1a2 · · · an−1. If p | an , then we are through. As
regards the case where p | a1a2 · · · an−1, the induction hypothesis ensures that p | ak

for some choice of k, with 1 ≤ k ≤ n − 1. In any event, p divides one of the integers
a1, a2, . . . , an .

Corollary 2. If p, q1, q2, . . . , qn are all primes and p | q1q2 · · · qn , then p = qk for
some k, where 1 ≤ k ≤ n.

Proof. By virtue of Corollary 1, we know that p | qk for some k, with 1 ≤ k ≤ n. Being
a prime, qk is not divisible by any positive integer other than 1 or qk itself. Because
p > 1, we are forced to conclude that p = qk .

With this preparation out of the way, we arrive at one of the cornerstones of
our development, the Fundamental Theorem of Arithmetic. As indicated earlier,
this theorem asserts that every integer greater than 1 can be factored into primes
in essentially one way; the linguistic ambiguity essentially means that 2 · 3 · 2 is
not considered as being a different factorization of 12 from 2 · 2 · 3. We state this
precisely in Theorem 3.2.
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Theorem 3.2 Fundamental Theorem of Arithmetic. Every positive integer n > 1
is either a prime or a product of primes; this representation is unique, apart from the
order in which the factors occur.

Proof. Either n is a prime or it is composite; in the former case, there is nothing
more to prove. If n is composite, then there exists an integer d satisfying d | n and
1 < d < n. Among all such integers d , choose p1 to be the smallest (this is possible
by the Well-Ordering Principle). Then p1 must be a prime number. Otherwise it too
would have a divisor q with 1 < q < p1; but then q | p1 and p1 | n imply that q | n,
which contradicts the choice of p1 as the smallest positive divisor, not equal to 1, of n.

We therefore may write n = p1n1, where p1 is prime and 1 < n1 < n. If n1 happens
to be a prime, then we have our representation. In the contrary case, the argument is
repeated to produce a second prime number p2 such that n1 = p2n2; that is,

n = p1 p2n2 1 < n2 < n1

If n2 is a prime, then it is not necessary to go further. Otherwise, write n2 = p3n3, with
p3 a prime:

n = p1 p2 p3n3 1 < n3 < n2

The decreasing sequence

n > n1 > n2 > · · · > 1

cannot continue indefinitely, so that after a finite number of steps nk−1 is a prime, call
it, pk . This leads to the prime factorization

n = p1 p2 · · · pk

To establish the second part of the proof—the uniqueness of the prime
factorization—let us suppose that the integer n can be represented as a product of
primes in two ways; say,

n = p1 p2 · · · pr = q1q2 · · · qs r ≤ s

where the pi and q j are all primes, written in increasing magnitude so that

p1 ≤ p2 ≤ · · · ≤ pr q1 ≤ q2 ≤ · · · ≤ qs

Because p1 | q1q2 · · · qs , Corollary 2 of Theorem 3.1 tells us that p1 = qk for some k;
but then p1 ≥ q1. Similar reasoning gives q1 ≥ p1, whence p1 = q1. We may cancel
this common factor and obtain

p2 p3 · · · pr = q2q3 · · · qs

Now repeat the process to get p2 = q2 and, in turn,

p3 p4 · · · pr = q3q4 · · · qs

Continue in this fashion. If the inequality r < s were to hold, we would eventually
arrive at

1 = qr+1qr+2 · · · qs

which is absurd, because each q j > 1. Hence, r = s and

p1 = q1 p2 = q2, . . . , pr = qr

making the two factorizations of n identical. The proof is now complete.
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Of course, several of the primes that appear in the factorization of a given positive
integer may be repeated, as is the case with 360 = 2 · 2 · 2 · 3 · 3 · 5. By collecting
like primes and replacing them by a single factor, we can rephrase Theorem 3.2 as
a corollary.

Corollary. Any positive integer n > 1 can be written uniquely in a canonical form

n = pk1
1 pk2

2 · · · pkr
r

where, for i = 1, 2, . . . , r , each ki is a positive integer and each pi is a prime, with
p1 < p2 < · · · < pr .

To illustrate, the canonical form of the integer 360 is 360 = 23 · 32 · 5. As further
examples we cite

4725 = 33 · 52 · 7 and 17460 = 23 · 32 · 5 · 72

Prime factorizations provide another means of calculating greatest common
divisors. For suppose that p1, p2, . . . , pn are the distinct primes that divide either of
a or b. Allowing zero exponents, we can write

a = pk1
1 pk2

2 · · · pkn
n , b = p j1

1 p j2
2 · · · p jn

n

Then

gcd(a, b) = pr1
1 pr2

2 · · · prn
n

where ri = min(ki , ji ), the smaller of the two exponents associated with pi in the
two representations. In the case a = 4725 and b = 17460, we would have

4725 = 20 · 33 · 52 · 7, 7460 = 23 · 32 · 5 · 72

and so

gcd(4725, 17460) = 20 · 32 · 5 · 7· = 315

This is an opportune moment to insert a famous result of Pythagoras.
Mathematics as a science began with Pythagoras (569–500 B.C.), and much of the
content of Euclid’s Elements is due to Pythagoras and his school. The Pythagoreans
deserve the credit for being the first to classify numbers into odd and even, prime
and composite.

Theorem 3.3 Pythagoras. The number
√

2 is irrational.

Proof. Suppose, to the contrary, that
√

2 is a rational number, say,
√

2 = a/b, where
a and b are both integers with gcd(a, b) = 1. Squaring, we get a2 = 2b2, so that b | a2.
If b > 1, then the Fundamental Theorem of Arithmetic guarantees the existence of a
prime p such that p | b. It follows that p | a2 and, by Theorem 3.1, that p | a; hence,
gcd(a, b) ≥ p. We therefore arrive at a contradiction, unless b = 1. But if this happens,
then a2 = 2, which is impossible (we assume that the reader is willing to grant that
no integer can be multiplied by itself to give 2). Our supposition that

√
2 is a rational

number is untenable, and so
√

2 must be irrational.
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There is an interesting variation on the proof of Theorem 3.3. If
√

2 = a/b with
gcd(a, b) = 1, there must exist integers r and s satisfying ar + bs = 1. As a result,

√
2 =

√
2(ar + bs) = (

√
2a)r + (

√
2b)s = 2br + as

This representation of
√

2 leads us to conclude that
√

2 is an integer, an obvious
impossibility.

PROBLEMS 3.1

1. It has been conjectured that there are infinitely many primes of the form n2 − 2. Exhibit
five such primes.

2. Give an example to show that the following conjecture is not true: Every positive integer
can be written in the form p + a2, where p is either a prime or 1, and a ≥ 0.

3. Prove each of the assertions below:
(a) Any prime of the form 3n + 1 is also of the form 6m + 1.
(b) Each integer of the form 3n + 2 has a prime factor of this form.
(c) The only prime of the form n3 − 1 is 7.

[Hint: Write n3 − 1 as (n − 1)(n2 + n + 1).]
(d) The only prime p for which 3p + 1 is a perfect square is p = 5.
(e) The only prime of the form n2 − 4 is 5.

4. If p ≥ 5 is a prime number, show that p2 + 2 is composite.
[Hint: p takes one of the forms 6k + 1 or 6k + 5.]

5. (a) Given that p is a prime and p | an , prove that pn | an .
(b) If gcd(a, b) = p, a prime, what are the possible values of gcd(a2, b2), gcd(a2, b) and

gcd(a3, b2)?
6. Establish each of the following statements:

(a) Every integer of the form n4 + 4, with n > 1, is composite.
[Hint: Write n4 + 4 as a product of two quadratic factors.]

(b) If n > 4 is composite, then n divides (n − 1)!.
(c) Any integer of the form 8n + 1, where n ≥ 1, is composite.

[Hint: 2n + 1 | 23n + 1.]
(d) Each integer n > 11 can be written as the sum of two composite numbers.

[Hint: If n is even, say n = 2k, then n − 6 = 2(k − 3); for n odd, consider the integer
n − 9.]

7. Find all prime numbers that divide 50!.
8. If p ≥ q ≥ 5 and p and q are both primes, prove that 24 | p2 − q2.
9. (a) An unanswered question is whether there are infinitely many primes that are 1 more

than a power of 2, such as 5 = 22 + 1. Find two more of these primes.
(b) A more general conjecture is that there exist infinitely many primes of the form

n2 + 1; for example, 257 = 162 + 1. Exhibit five more primes of this type.
10. If p �= 5 is an odd prime, prove that either p2 − 1 or p2 + 1 is divisible by 10.
11. Another unproven conjecture is that there are an infinitude of primes that are 1 less than

a power of 2, such as 3 = 22 − 1.
(a) Find four more of these primes.
(b) If p = 2k − 1 is prime, show that k is an odd integer, except when k = 2.

[Hint: 3 | 4n − 1 for all n ≥ 1.]
12. Find the prime factorization of the integers 1234, 10140, and 36000.
13. If n > 1 is an integer not of the form 6k + 3, prove that n2 + 2n is composite.

[Hint: Show that either 2 or 3 divides n2 + 2n .]
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14. It has been conjectured that every even integer can be written as the difference of two
consecutive primes in infinitely many ways. For example,

6 = 29 − 23 = 137 − 131 = 599 − 593 = 1019 − 1013 = · · ·

Express the integer 10 as the difference of two consecutive primes in 15 ways.
15. Prove that a positive integer a > 1 is a square if and only if in the canonical form of a

all the exponents of the primes are even integers.
16. An integer is said to be square-free if it is not divisible by the square of any integer greater

than 1. Prove the following:
(a) An integer n > 1 is square-free if and only if n can be factored into a product of

distinct primes.
(b) Every integer n > 1 is the product of a square-free integer and a perfect square.

[Hint: If n = pk1
1 pk2

2 · · · pks
s is the canonical factorization of n, then write ki =

2qi + ri where ri = 0 or 1 according as ki is even or odd.]
17. Verify that any integer n can be expressed as n = 2km, where k ≥ 0 and m is an odd

integer.
18. Numerical evidence makes it plausible that there are infinitely many primes p such that

p + 50 is also prime. List 15 of these primes.
19. A positive integer n is called square-full, or powerful, if p2 | n for every prime factor p

of n (there are 992 square-full numbers less than 250,000). If n is square-full, show that
it can be written in the form n = a2b3, with a and b positive integers.

3.2 THE SIEVE OF ERATOSTHENES

Given a particular integer, how can we determine whether it is prime or composite
and, in the latter case, how can we actually find a nontrivial divisor? The most
obvious approach consists of successively dividing the integer in question by each
of the numbers preceding it; if none of them (except 1) serves as a divisor, then the
integer must be prime. Although this method is very simple to describe, it cannot
be regarded as useful in practice. For even if one is undaunted by large calculations,
the amount of time and work involved may be prohibitive.

There is a property of composite numbers that allows us to reduce materially
the necessary computations—but still the process remains cumbersome. If an in-
teger a > 1 is composite, then it may be written as a = bc, where 1 < b < a and
1 < c < a. Assuming that b ≤ c, we get b2 ≤ bc = a, and so b ≤ √

a. Because
b > 1, Theorem 3.2 ensures that b has at least one prime factor p. Then p ≤ b ≤ √

a;
furthermore, because p | b and b | a, it follows that p | a. The point is simply this: a
composite number a will always possess a prime divisor p satisfying p ≤ √

a.
In testing the primality of a specific integer a > 1, it therefore suffices to divide

a by those primes not exceeding
√

a (presuming, of course, the availability of a
list of primes up to

√
a). This may be clarified by considering the integer a = 509.

Inasmuch as 22 <
√

509 < 23, we need only try out the primes that are not larger
than 22 as possible divisors, namely, the primes 2, 3, 5, 7, 11, 13, 17, 19. Dividing
509 by each of these, in turn, we find that none serves as a divisor of 509. The
conclusion is that 509 must be a prime number.
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Example 3.1. The foregoing technique provides a practical means for determining the
canonical form of an integer, say a = 2093. Because 45 <

√
2093 < 46, it is enough

to examine the primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43. By trial, the
first of these to divide 2093 is 7, and 2093 = 7 · 299. As regards the integer 299, the
seven primes that are less than 18 (note that 17 <

√
299 < 18) are 2, 3, 5, 7, 11, 13, 17.

The first prime divisor of 299 is 13 and, carrying out the required division, we obtain
299 = 13 · 23. But 23 is itself a prime, whence 2093 has exactly three prime factors,
7, 13, and 23:

2093 = 7 · 13 · 23

Another Greek mathematician whose work in number theory remains significant
is Eratosthenes of Cyrene (276–194 B.C.). Although posterity remembers him mainly
as the director of the world-famous library at Alexandria, Eratosthenes was gifted in
all branches of learning, if not of first rank in any; in his own day, he was nicknamed
“Beta” because, it was said, he stood at least second in every field. Perhaps the
most impressive feat of Eratosthenes was the accurate measurement of the earth’s
circumference by a simple application of Euclidean geometry.

We have seen that if an integer a > 1 is not divisible by any prime p ≤ √
a,

then a is of necessity a prime. Eratosthenes used this fact as the basis of a clever
technique, called the Sieve of Eratosthenes, for finding all primes below a given
integer n. The scheme calls for writing down the integers from 2 to n in their
natural order and then systematically eliminating all the composite numbers by
striking out all multiples 2p, 3p, 4p, 5p, . . . of the primes p ≤ √

n. The in-
tegers that are left on the list—those that do not fall through the “sieve”—are
primes.

To see an example of how this works, suppose that we wish to find all primes
not exceeding 100. Consider the sequence of consecutive integers 2, 3, 4, . . . ,100.
Recognizing that 2 is a prime, we begin by crossing out all even integers from our
listing, except 2 itself. The first of the remaining integers is 3, which must be a
prime. We keep 3, but strike out all higher multiples of 3, so that 9, 15, 21, . . . are
now removed (the even multiples of 3 having been removed in the previous step).
The smallest integer after 3 that has not yet been deleted is 5. It is not divisible by
either 2 or 3—otherwise it would have been crossed out—hence, it is also a prime.
All proper multiples of 5 being composite numbers, we next remove 10, 15, 20, . . .

(some of these are, of course, already missing), while retaining 5 itself. The first
surviving integer 7 is a prime, for it is not divisible by 2, 3, or 5, the only primes
that precede it. After eliminating the proper multiples of 7, the largest prime less
than

√
100 = 10, all composite integers in the sequence 2, 3, 4, . . . ,100 have fallen

through the sieve. The positive integers that remain, to wit, 2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, are all of the primes
less than 100.

The following table represents the result of the completed sieve. The multiples
of 2 are crossed out by \; the multiples of 3 are crossed out by /; the multiples of 5
are crossed out by —; the multiples of 7 are crossed out by ∼.
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              2          3          4          5          6          7          8          9          10
11        12        13        14        15        16        17        18        19          20
21        22        23        24        25        26        27        28        29          30
31        32        33        34        35        36        37        38        39          40
41        42        43        44        45        46        47        48        49          50
51        52        53        54        55        56        57        58        59          60
61        62        63        64        65        66        67        68        69          70
71        72        73        74        75        76        77        78        79          80
81        82        83        84        85        86        87        88        89          90
91        92        93        94        95        96        97        98        99        100

By this point, an obvious question must have occurred to the reader. Is there a
largest prime number, or do the primes go on forever? The answer is to be found
in a remarkably simple proof given by Euclid in Book IX of his Elements. Euclid’s
argument is universally regarded as a model of mathematical elegance. Loosely
speaking, it goes like this: Given any finite list of prime numbers, one can always
find a prime not on the list; hence, the number of primes is infinite. The actual details
appear below.

Theorem 3.4 Euclid. There is an infinite number of primes.

Proof. Euclid’s proof is by contradiction. Let p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . . be
the primes in ascending order, and suppose that there is a last prime, called pn . Now
consider the positive integer

P = p1 p2 · · · pn + 1

Because P > 1, we may put Theorem 3.2 to work once again and conclude that P
is divisible by some prime p. But p1, p2, . . . , pn are the only prime numbers, so
that p must be equal to one of p1, p2, . . . , pn . Combining the divisibility relation
p | p1 p2 · · · pn with p | P , we arrive at p | P − p1 p2 · · · pn or, equivalently, p | 1. The
only positive divisor of the integer 1 is 1 itself and, because p > 1, a contradiction
arises. Thus, no finite list of primes is complete, whence the number of primes is
infinite.

For a prime p, define p# to be the product of all primes that are less than or equal
to p. Numbers of the form p# + 1 might be termed Euclidean numbers, because they
appear in Euclid’s scheme for proving the infinitude of primes. It is interesting to
note that in forming these integers, the first five, namely,

2# + 1 = 2 + 1 = 3

3# + 1 = 2 · 3 + 1 = 7

5# + 1 = 2 · 3 · 5 + 1 = 31

7# + 1 = 2 · 3 · 5 · 7 + 1 = 211

11# + 1 = 2 · 3 · 5 · 7 · 11 + 1 = 2311
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are all prime numbers. However,

13# + 1 = 59 · 509

17# + 1 = 19 · 97 · 277

19# + 1 = 347 · 27953

are not prime. A question whose answer is not known is whether there are infinitely
many primes p for which p# + 1 is also prime. For that matter, are there infinitely
many composite p# + 1?

At present, 22 primes of the form p# + 1 have been identified. The first few
correspond to the values p = 2, 3, 5, 7, 11, 31, 379, 1019, 1021, 2657, 3229. The
twenty-second occurs when p = 392113 and consists of 169966 digits. It was found
in 2001.

Euclid’s theorem is too important for us to be content with a single proof. Here
is a variation in the reasoning: Form the infinite sequence of positive integers

n1 = 2

n2 = n1 + 1

n3 = n1n2 + 1

n4 = n1n2n3 + 1
...

nk = n1n2 · · · nk−1 + 1
...

Because each nk > 1, each of these integers is divisible by a prime. But no two
nk can have the same prime divisor. To see this, let d = gcd(ni , nk) and suppose
that i < k. Then d divides ni and, hence, must divide n1n2 · · · nk−1. Because d | nk ,
Theorem 2.2 (g) tells us that d | nk − n1n2 · · · nk−1 or d | 1. The implication is that
d = 1, and so the integers nk(k = 1, 2, . . .) are pairwise relatively prime. The point
we wish to make is that there are as many distinct primes as there are integers nk ,
namely, infinitely many of them.

Let pn denote the nth of the prime numbers in their natural order. Euclid’s proof
shows that the expression p1 p2 · · · pn + 1 is divisible by at least one prime. If there
are several such prime divisors, then pn+1 cannot exceed the smallest of these so
that pn+1 ≤ p1 p2 · · · pn + 1 for n ≥ 1. Another way of saying the same thing is that

pn ≤ p1 p2 · · · pn−1 + 1 n ≥ 2

With a slight modification of Euclid’s reasoning, this inequality can be improved to
give

pn ≤ p1 p2 · · · pn−1 − 1 n ≥ 3

For instance, when n = 5, this tells us that

11 = p5 ≤ 2 · 3 · 5 · 7 − 1 = 209
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We can see that the estimate is rather extravagant. A sharper limitation on the size
of pn is given by Bonse’s inequality, which states that

p2
n < p1 p2 · · · pn−1 n ≥ 5

This inequality yields p2
5 < 210, or p5 ≤ 14. A somewhat better size-estimate for

p5 comes from the inequality

p2n ≤ p2 p3 · · · pn − 2 n ≥ 3

Here, we obtain

p5 < p6 ≤ p2 p3 − 2 = 3 · 5 − 2 = 13

To approximate the size of pn from these formulas, it is necessary to know the
values of p1, p2, . . . , pn−1. For a bound in which the preceding primes do not enter
the picture, we have the following theorem.

Theorem 3.5. If pn is the nth prime number, then pn ≤ 22n−1
.

Proof. Let us proceed by induction on n, the asserted inequality being clearly true
when n = 1. As the hypothesis of the induction, we assume that n > 1 and that the
result holds for all integers up to n. Then

pn+1 ≤ p1 p2 · · · pn + 1

≤ 2 · 22 · · · 22n−1 + 1 = 21+2+22+···+2n−1 + 1

Recalling the identity 1 + 2 + 22 + · · · + 2n−1 = 2n − 1, we obtain

pn+1 ≤ 22n−1 + 1

However, 1 ≤ 22n−1 for all n; whence

pn+1 ≤ 22n−1 + 22n−1

= 2 · 22n−1 = 22n

completing the induction step, and the argument.

There is a corollary to Theorem 3.5 that is of interest.

Corollary. For n ≥ 1, there are at least n + 1 primes less than 22n
.

Proof. From the theorem, we know that p1, p2, . . . , pn+1 are all less than 22n
.

We can do considerably better than is indicated by Theorem 3.5. In 1845, Joseph
Bertrand conjectured that the prime numbers are well distributed in the sense that
between n ≥ 2 and 2n there is at least one prime. He was unable to establish his con-
jecture, but verified it for all n ≤ 3,000,000. (One way of achieving this is to consider
a sequence of primes 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 5003, 9973,
19937, 39869, 79699, 159389, . . . each of which is less than twice the preceding.)
Because it takes some real effort to substantiate this famous conjecture, let us content
ourselves with saying that the first proof was carried out by the Russian mathemati-
cian P. L. Tchebycheff in 1852. Granting the result, it is not difficult to show that

pn < 2n n ≥ 2
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and as a direct consequence, pn+1 < 2pn for n ≥ 2. In particular,

11 = p5 < 2 · p4 = 14

To see that pn < 2n , we argue by induction on n. Clearly, p2 = 3 < 22, so that
the inequality is true here. Now assume that the inequality holds for an integer n,
whence pn < 2n . Invoking Bertrand’s conjecture, there exists a prime number p
satisfying 2n < p < 2n+1; that is, pn < p. This immediately leads to the conclusion
that pn+1 ≤ p < 2n+1, which completes the induction and the proof.

Primes of special form have been of perennial interest. Among these, the repunit
primes are outstanding in their simplicity. A repunit is an integer written (in decimal
notation) as a string of 1’s, such as 11, 111, or 1111. Each such integer must have
the form (10n − 1)/9. We use the symbol Rn to denote the repunit consisting of
n consecutive 1’s. A peculiar feature of these numbers is the apparent scarcity of
primes among them. So far, only R2, R19, R23, R317, R1031, R49081, R86453, R109297,
and R270343 have been identified as primes (the last one in 2007). It is known that the
only possible repunit primes Rn for all n ≤ 49000 are the nine numbers just indicated.
No conjecture has been made as to the existence of any others. For a repunit Rn to
be prime, the subscript n must be a prime; that this is not a sufficient condition is
shown by

R5 = 11111 = 41 · 271 R7 = 1111111 = 239 · 4649

PROBLEMS 3.2

1. Determine whether the integer 701 is prime by testing all primes p ≤ √
701 as possible

divisors. Do the same for the integer 1009.
2. Employing the Sieve of Eratosthenes, obtain all the primes between 100 and 200.
3. Given that p � | n for all primes p ≤ 3√n, show that n > 1 is either a prime or the product

of two primes.
[Hint: Assume to the contrary that n contains at least three prime factors.]

4. Establish the following facts:
(a)

√
p is irrational for any prime p.

(b) If a is a positive integer and n√a is rational, then n√a must be an integer.
(c) For n ≥ 2, n√n is irrational.

[Hint: Use the fact that 2n > n.]
5. Show that any composite three-digit number must have a prime factor less than or equal

to 31.
6. Fill in any missing details in this sketch of a proof of the infinitude of primes: Assume

that there are only finitely many primes, say p1, p2, . . . , pn . Let A be the product of any
r of these primes and put B = p1 p2 · · · pn/A. Then each pk divides either A or B, but
not both. Because A + B > 1, A + B has a prime divisor different from any of the pk ,
which is a contradiction.

7. Modify Euclid’s proof that there are infinitely many primes by assuming the existence
of a largest prime p and using the integer N = p! + 1 to arrive at a contradiction.

8. Give another proof of the infinitude of primes by assuming that there are only finitely many
primes, say p1, p2, . . . , pn , and using the following integer to arrive at a contradiction:

N = p2 p3 · · · pn + p1 p3 · · · pn + · · · + p1 p2 · · · pn−1
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9. (a) Prove that if n > 2, then there exists a prime p satisfying n < p < n!.
[Hint: If n! − 1 is not prime, then it has a prime divisor p; and p ≤ n implies p | n!,
leading to a contradiction.]

(b) For n > 1, show that every prime divisor of n! + 1 is an odd integer that is greater
than n.

10. Let qn be the smallest prime that is strictly greater than Pn = p1 p2 · · · pn + 1. It has been
conjectured that the difference qn − (p1 p2 · · · pn) is always a prime. Confirm this for the
first five values of n.

11. If pn denotes the nth prime number, put dn = pn+1 − pn . An open question is whether
the equation dn = dn+1 has infinitely many solutions. Give five solutions.

12. Assuming that pn is the nth prime number, establish each of the following statements:
(a) pn > 2n − 1 for n ≥ 5.
(b) None of the integers Pn = p1 p2 · · · pn + 1 is a perfect square.

[Hint: Each Pn is of the form 4k + 3 for n > 1.]
(c) The sum

1

p1
+ 1

p2
+ · · · + 1

pn

is never an integer.
13. For the repunits Rn , verify the assertions below:

(a) If n | m, then Rn | Rm .
[Hint: If m = kn, consider the identity

xm − 1 = (xn − 1)(x (k−1)n + x (k−2)n + · · · + xn + 1).]

(b) If d | Rn and d | Rm , then d | Rn+m .
[Hint: Show that Rm+n = Rn10m + Rm .]

(c) If gcd(n, m) = 1, then gcd(Rn, Rm) = 1.
14. Use the previous problem to obtain the prime factors of the repunit R10.

3.3 THE GOLDBACH CONJECTURE

Although there is an infinitude of primes, their distribution within the positive inte-
gers is most mystifying. Repeatedly in their distribution we find hints or, as it were,
shadows of a pattern; yet an actual pattern amenable to precise description remains
elusive. The difference between consecutive primes can be small, as with the pairs
11 and 13, 17 and 19, or for that matter 1000000000061 and 1000000000063. At
the same time there exist arbitrarily long intervals in the sequence of integers that
are totally devoid of any primes.

It is an unanswered question whether there are infinitely many pairs of twin
primes; that is, pairs of successive odd integers p and p + 2 that are both primes.
Numerical evidence leads us to suspect an affirmative conclusion. Electronic com-
puters have discovered 152891 pairs of twin primes less than 30000000 and 20 pairs
between 1012 and 1012+ 10000, which hints at their growing scarcity as the positive
integers increase in magnitude. Many examples of immense twins are known. The
largest twins to date, each 100355 digits long,

65516468355 · 2333333 ± 1

were discovered in 2009.
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Consecutive primes not only can be close together, but also can be far apart; that
is, arbitrarily large gaps can occur between consecutive primes. Stated precisely:
Given any positive integer n, there exist n consecutive integers, all of which are
composite. To prove this, we simply need to consider the integers

(n + 1)! + 2, (n + 1)! + 3, . . . , (n + 1)! + (n + 1)

where (n + 1)! = (n + 1) · n · · · 3 · 2 · 1. Clearly there are n integers listed, and
they are consecutive. What is important is that each integer is composite. Indeed,
(n + 1)! + 2 is divisible by 2, (n + 1)! + 3 is divisible by 3, and so on.

For instance, if a sequence of four consecutive composite integers is desired,
then the previous argument produces 122, 123, 124, and 125:

5! + 2 = 122 = 2 · 61

5! + 3 = 123 = 3 · 41

5! + 4 = 124 = 4 · 31

5! + 5 = 125 = 5 · 25

Of course, we can find other sets of four consecutive composites, such as 24, 25, 26,
27 or 32, 33, 34, 35.

As this example suggests, our procedure for constructing gaps between two con-
secutive primes gives a gross overestimate of where they occur among the integers.
The first occurrences of prime gaps of specific lengths, where all the intervening inte-
gers are composite, have been the subject of computer searches. For instance, there is
a gap of length 778 (that is, pn+1 − pn = 778) following the prime 42842283925351.
No gap of this size exists between two smaller primes. The largest effectively cal-
culated gap between consecutive prime numbers has length 1442, with a string of
1441 composites immediately after the prime

804212830686677669

Interestingly, computer researchers have not identified gaps of every possible width
up to 1442. The smallest missing gap size is 796. The conjecture is that there is a
prime gap (a string of 2k − 1 consecutive composites between two primes) for every
even integer 2k.

This brings us to another unsolved problem concerning the primes, the Gold-
bach conjecture. In a letter to Leonhard Euler in the year 1742, Christian Goldbach
hazarded the guess that every even integer is the sum of two numbers that are either
primes or 1. A somewhat more general formulation is that every even integer greater
than 4 can be written as a sum of two odd prime numbers. This is easy to confirm
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for the first few even integers:

2 = 1 + 1

4 = 2 + 2 = 1 + 3

6 = 3 + 3 = 1 + 5

8 = 3 + 5 = 1 + 7

10 = 3 + 7 = 5 + 5

12 = 5 + 7 = 1 + 11

14 = 3 + 11 = 7 + 7 = 1 + 13

16 = 3 + 13 = 5 + 11

18 = 5 + 13 = 7 + 11 = 1 + 17

20 = 3 + 17 = 7 + 13 = 1 + 19

22 = 3 + 19 = 5 + 17 = 11 + 11

24 = 5 + 19 = 7 + 17 = 11 + 13 = 1 + 23

26 = 3 + 23 = 7 + 19 = 13 + 13

28 = 5 + 23 = 11 + 17

30 = 7 + 23 = 11 + 19 = 13 + 17 = 1 + 29

Although it seems that Euler never tried to prove the result, upon writing to Goldbach
at a later date, Euler countered with a conjecture of his own: Any even integer (≥ 6)
of the form 4n + 2 is a sum of two numbers each being either a prime of the form
4n + 1 or 1.

The numerical data suggesting the truth of Goldbach’s conjecture are over-
whelming. It has been verified by computers for all even integers less than 4 · 1014.
As the integers become larger, the number of different ways in which 2n can be
expressed as the sum of two primes increases. For example, there are 291400 such
representations for the even integer 100000000. Although this supports the feeling
that Goldbach was correct in his conjecture, it is far from a mathematical proof,
and all attempts to obtain a proof have been completely unsuccessful. One of the
most famous number theorists of the last century, G. H. Hardy, in his address to the
Mathematical Society of Copenhagen in 1921, stated that the Goldbach conjecture
appeared “probably as difficult as any of the unsolved problems in mathematics.” It
is currently known that every even integer is the sum of six or fewer primes.

We remark that if the conjecture of Goldbach is true, then each odd number
larger than 7 must be the sum of three odd primes. To see this, take n to be an odd
integer greater than 7, so that n − 3 is even and greater than 4; if n − 3 could be
expressed as the sum of two odd primes, then n would be the sum of three.

The first real progress on the conjecture in nearly 200 years was made by Hardy
and Littlewood in 1922. On the basis of a certain unproved hypothesis, the so-
called generalized Riemann hypothesis, they showed that every sufficiently large
odd number is the sum of three odd primes. In 1937, the Russian mathematician
I. M. Vinogradov was able to remove the dependence on the generalized Riemann
hypothesis, thereby giving an unconditional proof of this result; that is to say, he
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established that all odd integers greater than some effectively computable n0 can be
written as the sum of three odd primes.

n = p1 + p2 + p3 (n odd, n sufficiently large)

Vinogradov was unable to decide how large n0 should be, but Borozdkin (1956)
proved that n0 < 3315

. In 2002, the bound on n0 was reduced to 101346. It follows
immediately that every even integer from some point on is the sum of either two
or four primes. Thus, it is enough to answer the question for every odd integer n
in the range 9 ≤ n ≤ n0, which, for a given integer, becomes a matter of tedious
computation (unfortunately, n0 is so large that this exceeds the capabilities of the
most modern electronic computers).

Because of the strong evidence in favor of the famous Goldbach conjecture, we
readily become convinced that it is true. Nevertheless, it might be false. Vinogradov
showed that if A(x) is the number of even integers n ≤ x that are not the sum of two
primes, then

lim
x→∞ A(x)/x = 0

This allows us to say that “almost all” even integers satisfy the conjecture. As Edmund
Landau so aptly put it, “The Goldbach conjecture is false for at most 0% of all even
integers; this at most 0% does not exclude, of course, the possibility that there are
infinitely many exceptions.”

Having digressed somewhat, let us observe that according to the Division Al-
gorithm, every positive integer can be written uniquely in one of the forms

4n 4n + 1 4n + 2 4n + 3

for some suitable n ≥ 0. Clearly, the integers 4n and 4n + 2 = 2(2n + 1) are both
even. Thus, all odd integers fall into two progressions: one containing integers of
the form 4n + 1, and the other containing integers of the form 4n + 3.

The question arises as to how these two types of primes are distributed within the
set of positive integers. Let us display the first few odd prime numbers in consecutive
order, putting the 4n + 3 primes in the top row and the 4n + 1 primes under them:

3 7 11 19 23 31 43 47 59 67 71 79 83

5 13 17 29 37 41 53 61 73 89

At this point, one might have the general impression that primes of the form
4n + 3 are more abundant than are those of the form 4n + 1. To obtain more precise
information, we require the help of the function πa,b(x), which counts the number
of primes of the form p = an + b not exceeding x . Our small table, for instance,
indicates that π4,1(89) = 10 and π4,3(89) = 13.

In a famous letter written in 1853, Tchebycheff remarked that π4,1(x) ≤ π4,3(x)
for small values of x . He also implied that he had a proof that the inequality always
held. In 1914, J. E. Littlewood showed that the inequality fails infinitely often, but
his method gave no indication of the value of x for which this first happens. It turned
out to be quite difficult to find. Not until 1957 did a computer search reveal that
x = 26861 is the smallest prime for which π4,1(x) > π4,3(x); here, π4,1(x) = 1473
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and π4,3(x) = 1472. This is an isolated situation, because the next prime at which a
reversal occurs is x = 616,841. Remarkably, π4,1(x) > π4,3(x) for the 410 million
successive integers x lying between 18540000000 and 18950000000.

The behavior of primes of the form 3n ± 1 provided more of a computa-
tional challenge: the inequality π3,1(x) ≤ π3,2(x) holds for all x until one reaches
x = 608981813029.

This furnishes a pleasant opportunity for a repeat performance of Euclid’s
method for proving the existence of an infinitude of primes. A slight modifica-
tion of his argument reveals that there is an infinite number of primes of the form
4n + 3. We approach the proof through a simple lemma.

Lemma. The product of two or more integers of the form 4n + 1 is of the same form.

Proof. It is sufficient to consider the product of just two integers. Let us take k = 4n + 1
and k ′ = 4m + 1. Multiplying these together, we obtain

kk ′ = (4n + 1)(4m + 1)

= 16nm + 4n + 4m + 1 = 4(4nm + n + m) + 1

which is of the desired form.

This paves the way for Theorem 3.6.

Theorem 3.6. There are an infinite number of primes of the form 4n + 3.

Proof. In anticipation of a contradiction, let us assume that there exist only finitely
many primes of the form 4n + 3; call them q1, q2, . . . , qs . Consider the positive integer

N = 4q1q2 · · · qs − 1 = 4(q1q2 · · · qs − 1) + 3

and let N = r1r2 · · · rt be its prime factorization. Because N is an odd integer, we have
rk �= 2 for all k, so that each rk is either of the form 4n + 1 or 4n + 3. By the lemma,
the product of any number of primes of the form 4n + 1 is again an integer of this type.
For N to take the form 4n + 3, as it clearly does, N must contain at least one prime
factor ri of the form 4n + 3. But ri cannot be found among the listing q1, q2, . . . , qs ,
for this would lead to the contradiction that ri | 1. The only possible conclusion is that
there are infinitely many primes of the form 4n + 3.

Having just seen that there are infinitely many primes of the form 4n + 3, we
might reasonably ask: Is the number of primes of the form 4n + 1 also infinite? This
answer is likewise in the affirmative, but a demonstration must await the development
of the necessary mathematical machinery. Both these results are special cases of a
remarkable theorem by P. G. L. Dirichlet on primes in arithmetic progressions,
established in 1837. The proof is much too difficult for inclusion here, so that we
must content ourselves with the mere statement.

Theorem 3.7 Dirichlet. If a and b are relatively prime positive integers, then the
arithmetic progression

a, a + b, a + 2b, a + 3b, . . .

contains infinitely many primes.
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Dirichlet’s theorem tells us, for instance, that there are infinitely many prime
numbers ending in 999, such as 1999, 100999, 1000999, . . . for these appear in the
arithmetic progression determined by 1000n + 999, where gcd(1000, 999) = 1.

There is no arithmetic progression a, a + b, a + 2b, . . . that consists solely of
prime numbers. To see this, suppose that a + nb = p, where p is a prime. If we put
nk = n + kp for k = 1, 2, 3, . . . then the nk th term in the progression is

a + nkb = a + (n + kp)b = (a + nb) + kpb = p + kpb

Because each term on the right-hand side is divisible by p, so is a + nkb. In other
words, the progression must contain infinitely many composite numbers.

It was proved in 2008 that there are finite but arbitrarily long arithmetic progres-
sions consisting only of prime numbers (not necessarily consecutive primes). The
longest progression found to date is composed of the 23 primes:

56211383760397 + 44546738095860n 0 ≤ n ≤ 22

The prime factorization of the common difference between the terms is

22 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 99839

which is divisible by 9699690, the product of the primes less than 23. This takes
place according to Theorem 3.8.

Theorem 3.8. If all the n > 2 terms of the arithmetic progression

p, p + d, p + 2d, . . . , p + (n − 1)d

are prime numbers, then the common difference d is divisible by every prime q < n.

Proof. Consider a prime number q < n and assume to the contrary that q � | d . We
claim that the first q terms of the progression

p, p + d, p + 2d, . . . , p + (q − 1)d (1)

will leave different remainders when divided by q . Otherwise there exist integers j
and k, with 0 ≤ j < k ≤ q − 1, such that the numbers p + jd and p + kd yield the
same remainder upon division by q . Then q divides their difference (k − j)d. But
gcd(q, d) = 1, and so Euclid’s lemma leads to q | k − j , which is nonsense in light of
the inequality k − j ≤ q − 1.

Because the q different remainders produced from Eq. (1) are drawn from the
q integers 0, 1, . . . , q − 1, one of these remainders must be zero. This means that
q | p + td for some t satisfying 0 ≤ t ≤ q − 1. Because of the inequality q < n ≤
p ≤ p + td, we are forced to conclude that p + td is composite. (If p were less
than n, one of the terms of the progression would be p + pd = p(1 + d).) With this
contradiction, the proof that q | d is complete.

It has been conjectured that there exist arithmetic progressions of finite (but
otherwise arbitrary) length, composed of consecutive prime numbers. Examples of
such progressions consisting of three and four primes, respectively, are 47, 53, 59,
and 251, 257, 263, 269.

Most recently a sequence of 10 consecutive primes was discovered in which each
term exceeds its predecessor by just 210; the smallest of these primes has 93 digits.
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Finding an arithmetic progression consisting of 11 consecutive primes is likely to
be out of reach for some time. Absent the restriction that the primes involved be
consecutive, strings of 11-term arithmetic progressions are easily located. One such
is

110437 + 13860n 0 ≤ n ≤ 10

In the interest of completeness, we might mention another famous problem that,
so far, has resisted the most determined attack. For centuries, mathematicians have
sought a simple formula that would yield every prime number or, failing this, a
formula that would produce nothing but primes. At first glance, the request seems
modest enough: find a function f (n) whose domain is, say, the nonnegative integers
and whose range is some infinite subset of the set of all primes. It was widely believed
years ago that the quadratic polynomial

f (n) = n2 + n + 41

assumed only prime values. This was shown to be false by Euler, in 1772. As
evidenced by the following table, the claim is a correct one for n = 0, 1, 2, . . . , 39.

n f (n) n f (n) n f (n)

0 41 14 251 28 853
1 43 15 281 29 911
2 47 16 313 30 971
3 53 17 347 31 1033
4 61 18 383 32 1097
5 71 19 421 33 1163
6 83 20 461 34 1231
7 97 21 503 35 1301
8 113 22 547 36 1373
9 131 23 593 37 1447

10 151 24 641 38 1523
11 173 25 691 39 1601
12 197 26 743
13 223 27 797

However, this provocative conjecture is shattered in the cases n = 40 and n = 41,
where there is a factor of 41:

f (40) = 40 · 41 + 41 = 412

and

f (41) = 41 · 42 + 41 = 41 · 43

The next value f (42) = 1847 turns out to be prime once again. In fact, for the
first 100 integer values of n, the so-called Euler polynomial represents 86 primes.
Although it starts off very well in the production of primes, there are other quadratics
such as

g(n) = n2 + n + 27941
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that begin to best f (n) as the values of n become larger. For example, g(n) is prime
for 286129 values of 0 ≤ n ≤ 106, whereas its famous rival yields 261081 primes
in this range.

It has been shown that no polynomial of the form n2 + n + q, with q a prime,
can do better than the Euler polynomial in giving primes for successive values of n.
Indeed, until fairly recently no other quadratic polynomial of any kind was known
to produce more than 40 successive prime values. The polynomial

h(n) = 103n2 − 3945n + 34381

found in 1988, produces 43 distinct prime values for n = 0, 1, 2, . . . , 42. The current
record holder in this regard

k(n) = 36n2 − 810n + 2753

does slightly better by giving a string of 45 prime values.
The failure of the previous functions to be prime-producing is no accident,

for it is easy to prove that there is no nonconstant polynomial f (n) with integral
coefficients that takes on just prime values for integral n ≥ 0. We assume that such
a polynomial f (n) actually does exist and argue until a contradiction is reached. Let

f (n) = aknk + ak−1nk−1 + · · · + a2n2 + a1n + a0

where all the coefficients a0, a1, . . . , ak are integers, and ak �= 0. For a fixed value of
(n0), p = f (n0) is a prime number. Now, for any integer t , we consider the following
expression:

f (n0 + tp) = ak(n0 + tp)k + · · · + a1(n0 + tp) + a0

= (aknk
0 + · · · + a1n0 + a0) + pQ(t)

= f (n0) + pQ(t)

= p + pQ(t) = p(1 + Q(t))

where Q(t) is a polynomial in t having integral coefficients. Our reasoning shows
that p | f (n0 + tp); hence, from our own assumption that f (n) takes on only prime
values, f (n0 + tp) = p for any integer t . Because a polynomial of degree k can-
not assume the same value more than k times, we have obtained the required
contradiction.

Recent years have seen a measure of success in the search for prime-producing
functions. W. H. Mills proved (1947) that there exists a positive real number r such
that the expression f (n) = [r3n

] is prime for n = 1, 2, 3, . . . (the brackets indicate
the greatest integer function). Needless to say, this is strictly an existence theorem
and nothing is known about the actual value of r . Mills’s function does not produce
all the primes.

There are several celebrated, still unresolved, conjectures about primes. One
posed by G. H. Hardy and J. E. Littlewood in 1922 asks whether there are infinitely
many primes that can be represented in the form n2 + 1. The closest thing to an
answer, so far, came in 1978 when it was proved that there are infinitely many values
of n for which n2 + 1 is either a prime or the product of just two primes. One can
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start to see this for the smallest values

22 + 1 = 5 52 + 1 = 2 · 13 92 + 1 = 2 · 41

32 + 1 = 2 · 5 62 + 1 = 37 102 + 1 = 101

42 + 1 = 17 82 + 1 = 5 · 31

PROBLEMS 3.3

1. Verify that the integers 1949 and 1951 are twin primes.
2. (a) If 1 is added to a product of twin primes, prove that a perfect square is always

obtained.
(b) Show that the sum of twin primes p and p + 2 is divisible by 12, provided that p > 3.

3. Find all pairs of primes p and q satisfying p − q = 3.
4. Sylvester (1896) rephrased the Goldbach conjecture: Every even integer 2n greater than

4 is the sum of two primes, one larger than n/2 and the other less than 3n/2. Verify this
version of the conjecture for all even integers between 6 and 76.

5. In 1752, Goldbach submitted the following conjecture to Euler: Every odd integer can
be written in the form p + 2a2, where p is either a prime or 1 and a ≥ 0. Show that the
integer 5777 refutes this conjecture.

6. Prove that the Goldbach conjecture that every even integer greater than 2 is the sum of
two primes is equivalent to the statement that every integer greater than 5 is the sum of
three primes.
[Hint: If 2n − 2 = p1 + p2, then 2n = p1 + p2 + 2 and 2n + 1 = p1 + p2 + 3.]

7. A conjecture of Lagrange (1775) asserts that every odd integer greater than 5 can be
written as a sum p1 + 2p2, where p1, p2 are both primes. Confirm this for all odd
integers through 75.

8. Given a positive integer n, it can be shown that there exists an even integer a that is
representable as the sum of two odd primes in n different ways. Confirm that the integers
60, 78, and 84 can be written as the sum of two primes in six, seven, and eight ways,
respectively.

9. (a) For n > 3, show that the integers n, n + 2, n + 4 cannot all be prime.
(b) Three integers p, p + 2, p + 6, which are all prime, are called a prime-triplet. Find

five sets of prime-triplets.
10. Establish that the sequence

(n + 1)! − 2, (n + 1)! − 3, . . . , (n + 1)! − (n + 1)

produces n consecutive composite integers for n > 2.
11. Find the smallest positive integer n for which the function f (n) = n2 + n + 17 is com-

posite. Do the same for the functions g(n) = n2 + 21n + 1 and h(n) = 3n2 + 3n + 23.
12. Let pn denote the nth prime number. For n ≥ 3, prove that p2

n+3 < pn pn+1 pn+2.
[Hint: Note that p2

n+3 < 4p2
n+2 < 8pn+1 pn+2.]

13. Apply the same method of proof as in Theorem 3.6 to show that there are infinitely many
primes of the form 6n + 5.

14. Find a prime divisor of the integer N = 4(3 · 7 · 11) − 1 of the form 4n + 3. Do the same
for N = 4(3 · 7 · 11 · 15) − 1.

15. Another unanswered question is whether there exists an infinite number of sets of five
consecutive odd integers of which four are primes. Find five such sets of integers.

16. Let the sequence of primes, with 1 adjoined, be denoted by p0 = 1, p1 = 2, p2 = 3,
p3 = 5, . . . . For each n ≥ 1, it is known that there exists a suitable choice of coefficients
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εk = ±1 such that

p2n = p2n−1 +
2n−2∑
k=0

εk pk p2n+1 = 2p2n +
2n−1∑
k=0

εk pk

To illustrate:

13 = 1 + 2 − 3 − 5 + 7 + 11

and

17 = 1 + 2 − 3 − 5 + 7 − 11 + 2 · 13

Determine similar representations for the primes 23, 29, 31, and 37.
17. In 1848, de Polignac claimed that every odd integer is the sum of a prime and a power of

2. For example, 55 = 47 + 23 = 23 + 25. Show that the integers 509 and 877 discredit
this claim.

18. (a) If p is a prime and p � | b, prove that in the arithmetic progression

a, a + b, a + 2b, a + 3b, . . .

every pth term is divisible by p.
[Hint: Because gcd(p, b) = 1, there exist integers r and s satisfying pr + bs = 1.
Put nk = kp − as for k = 1, 2, . . . and show that p | (a + nkb).]

(b) From part (a), conclude that if b is an odd integer, then every other term in the
indicated progression is even.

19. In 1950, it was proved that any integer n > 9 can be written as a sum of distinct odd
primes. Express the integers 25, 69, 81, and 125 in this fashion.

20. If p and p2 + 8 are both prime numbers, prove that p3 + 4 is also prime.
21. (a) For any integer k > 0, establish that the arithmetic progression

a + b, a + 2b, a + 3b, . . .

where gcd(a, b) = 1, contains k consecutive terms that are composite.
[Hint: Put n = (a + b)(a + 2b) · · · (a + kb) and consider the k terms a + (n + 1)b,

a + (n + 2)b, . . . , a + (n + k)b.]
(b) Find five consecutive composite terms in the arithmetic progression

6, 11, 16, 21, 26, 31, 36, . . .

22. Show that 13 is the largest prime that can divide two successive integers of the form
n2 + 3.

23. (a) The arithmetic mean of the twin primes 5 and 7 is the triangular number 6. Are there
any other twin primes with a triangular mean?

(b) The arithmetic mean of the twin primes 3 and 5 is the perfect square 4. Are there any
other twin primes with a square mean?

24. Determine all twin primes p and q = p + 2 for which pq − 2 is also prime.
25. Let pn denote the nth prime. For n > 3, show that

pn < p1 + p2 + · · · + pn−1

[Hint: Use induction and the Bertrand conjecture.]
26. Verify the following:

(a) There exist infinitely many primes ending in 33, such as 233, 433, 733, 1033, . . . .

[Hint: Apply Dirichlet’s theorem.]
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(b) There exist infinitely many primes that do not belong to any pair of twin primes.
[Hint: Consider the arithmetic progression 21k + 5 for k = 1, 2, . . . .]

(c) There exists a prime ending in as many consecutive 1’s as desired.
[Hint: To obtain a prime ending in n consecutive 1’s, consider the arithmetic pro-
gression 10nk + Rn for k = 1, 2, . . . .]

(d) There exist infinitely many primes that contain but do not end in the block of digits
123456789.
[Hint: Consider the arithmetic progression 1011k + 1234567891 for k = 1, 2, . . . .]

27. Prove that for every n ≥ 2 there exists a prime p with p ≤ n < 2p.
[Hint: In the case where n = 2k + 1, then by the Bertrand conjecture there exists a prime
p such that k < p < 2k.]

28. (a) If n > 1, show that n! is never a perfect square.
(b) Find the values of n ≥ 1 for which

n! + (n + 1)! + (n + 2)!

is a perfect square.
[Hint: Note that n! + (n + 1)! + (n + 2)! = n!(n + 2)2.]
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CHAPTER

4
THE THEORY OF CONGRUENCES

Gauss once said “Mathematics is the queen of the sciences and number-theory
the queen of mathematics.” If this be true we may add that the Disquisitiones

is the Magna Charta of number-theory.
M. CANTOR

4.1 CARL FRIEDRICH GAUSS

Another approach to divisibility questions is through the arithmetic of remainders,
or the theory of congruences as it is now commonly known. The concept, and
the notation that makes it such a powerful tool, was first introduced by the German
mathematician Carl Friedrich Gauss (1777–1855) in his Disquisitiones Arithmeticae;
this monumental work, which appeared in 1801 when Gauss was 24 years old, laid
the foundations of modern number theory. Legend has it that a large part of the
Disquisitiones Arithmeticae had been submitted as a memoir to the French Academy
the previous year and had been rejected in a manner that, even if the work had been
as worthless as the referees believed, would have been inexcusable. (In an attempt
to lay this defamatory tale to rest, the officers of the academy made an exhaustive
search of their permanent records in 1935 and concluded that the Disquisitiones was
never submitted, much less rejected.) “It is really astonishing,” said Kronecker, “to
think that a single man of such young years was able to bring to light such a wealth
of results, and above all to present such a profound and well-organized treatment of
an entirely new discipline.”

61
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Carl Friedrich Gauss
(1777–1855)

(Dover Publications, Inc.)

Gauss was one of those remarkable infant prodigies whose natural aptitude for
mathematics soon became apparent. As a child of age three, according to a well-
authenticated story, he corrected an error in his father’s payroll calculations. His
arithmetical powers so overwhelmed his schoolmasters that, by the time Gauss was
7 years old, they admitted that there was nothing more they could teach the boy. It is
said that in his first arithmetic class Gauss astonished his teacher by instantly solving
what was intended to be a “busy work” problem: Find the sum of all the numbers
from 1 to 100. The young Gauss later confessed to having recognized the pattern

1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101, . . . , 50 + 51 = 101

Because there are 50 pairs of numbers, each of which adds up to 101, the sum of
all the numbers must be 50 · 101 = 5050. This technique provides another way of
deriving the formula

1 + 2 + 3 + · · · + n = n(n + 1)

2
for the sum of the first n positive integers. One need only display the consecutive
integers 1 through n in two rows as follows:

1 2 3 · · · n − 1 n

n n − 1 n − 2 · · · 2 1

Addition of the vertical columns produces n terms, each of which is equal to n + 1;
when these terms are added, we get the value n(n + 1). Because the same sum is
obtained on adding the two rows horizontally, what occurs is the formula n(n + 1) =
2(1 + 2 + 3 + · · · + n).

Gauss went on to a succession of triumphs, each new discovery following on
the heels of a previous one. The problem of constructing regular polygons with only
“Euclidean tools,” that is to say, with ruler and compass alone, had long been laid
aside in the belief that the ancients had exhausted all the possible constructions. In
1796, Gauss showed that the 17-sided regular polygon is so constructible, the first
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advance in this area since Euclid’s time. Gauss’s doctoral thesis of 1799 provided
a rigorous proof of the Fundamental Theorem of Algebra, which had been stated
first by Girard in 1629 and then proved imperfectly by d’Alembert (1746), and later
by Euler (1749). The theorem (it asserts that a polynomial equation of degree n has
exactly n complex roots) was always a favorite of Gauss’s, and he gave, in all, four
distinct demonstrations of it. The publication of Disquisitiones Arithmeticae in 1801
at once placed Gauss in the front rank of mathematicians.

The most extraordinary achievement of Gauss was more in the realm of theo-
retical astronomy than of mathematics. On the opening night of the 19th century,
January 1, 1801, the Italian astronomer Piazzi discovered the first of the so-called
minor planets (planetoids or asteroids), later called Ceres. But after the course of
this newly found body—visible only by telescope—passed the sun, neither Piazzi
nor any other astronomer could locate it again. Piazzi’s observations extended over
a period of 41 days, during which the orbit swept out an angle of only nine degrees.
From the scanty data available, Gauss was able to calculate the orbit of Ceres with
amazing accuracy, and the elusive planet was rediscovered at the end of the year in
almost exactly the position he had forecasted. This success brought Gauss worldwide
fame, and led to his appointment as director of Göttingen Observatory.

By the middle of the 19th century, mathematics had grown into an enormous
and unwieldy structure, divided into a large number of fields in which only the
specialist knew his way. Gauss was the last complete mathematician, and it is no
exaggeration to say that he was in some degree connected with nearly every aspect of
the subject. His contemporaries regarded him as Princeps Mathematicorum (Prince
of Mathematicians), on a par with Archimedes and Isaac Newton. This is revealed in
a small incident: On being asked who was the greatest mathematician in Germany,
Laplace answered, “Why, Pfaff.” When the questioner indicated that he would have
thought Gauss was, Laplace replied, “Pfaff is by far the greatest in Germany, but
Gauss is the greatest in all Europe.”

Although Gauss adorned every branch of mathematics, he always held number
theory in high esteem and affection. He insisted that, “Mathematics is the Queen of
the Sciences, and the theory of numbers is the Queen of Mathematics.”

4.2 BASIC PROPERTIES OF CONGRUENCE

In the first chapter of Disquisitiones Arithmeticae, Gauss introduces the concept of
congruence and the notation that makes it such a powerful technique (he explains that
he was induced to adopt the symbol ≡ because of the close analogy with algebraic
equality). According to Gauss, “If a number n measures the difference between two
numbers a and b, then a and b are said to be congruent with respect to n; if not,
incongruent.” Putting this into the form of a definition, we have Definition 4.1.

Definition 4.1. Let n be a fixed positive integer. Two integers a and b are said to be
congruent modulo n, symbolized by

a ≡ b (mod n)

if n divides the difference a − b; that is, provided that a − b = kn for some integer k.
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To fix the idea, consider n = 7. It is routine to check that

3 ≡ 24 (mod 7) − 31 ≡ 11 (mod 7) − 15 ≡ −64 (mod 7)

because 3 − 24 = (−3)7, −31 − 11 = (−6)7, and −15 − (−64) = 7 · 7. When
n � | (a − b), we say that a is incongruent to b modulo n, and in this case we write
a �≡ b (mod n). For a simple example: 25 �≡ 12 (mod 7), because 7 fails to divide
25 − 12 = 13.

It is to be noted that any two integers are congruent modulo 1, whereas two
integers are congruent modulo 2 when they are both even or both odd. Inasmuch as
congruence modulo 1 is not particularly interesting, the usual practice is to assume
that n > 1.

Given an integer a, let q and r be its quotient and remainder upon division by
n, so that

a = qn + r 0 ≤ r < n

Then, by definition of congruence, a ≡ r (mod n). Because there are n choices for
r , we see that every integer is congruent modulo n to exactly one of the values
0, 1, 2, . . . , n − 1; in particular, a ≡ 0 (mod n) if and only if n | a. The set of n
integers 0, 1, 2, . . . , n − 1 is called the set of least nonnegative residues modulo n.

In general, a collection of n integers a1, a2, . . . , an is said to form a complete set
of residues (or a complete system of residues) modulo n if every integer is congruent
modulo n to one and only one of the ak . To put it another way, a1, a2, . . . , an are
congruent modulo n to 0, 1, 2, . . . , n − 1, taken in some order. For instance,

−12, −4, 11, 13, 22, 82, 91

constitute a complete set of residues modulo 7; here, we have

−12 ≡ 2 − 4 ≡ 3 11 ≡ 4 13 ≡ 6 22 ≡ 1 82 ≡ 5 91 ≡ 0

all modulo 7. An observation of some importance is that any n integers form a
complete set of residues modulo n if and only if no two of the integers are congruent
modulo n. We shall need this fact later.

Our first theorem provides a useful characterization of congruence modulo n in
terms of remainders upon division by n.

Theorem 4.1. For arbitrary integers a and b, a ≡ b (mod n) if and only if a and b
leave the same nonnegative remainder when divided by n.

Proof. First take a ≡ b (mod n), so that a = b + kn for some integer k. Upon division
by n, b leaves a certain remainder r ; that is, b = qn + r , where 0 ≤ r < n. Therefore,

a = b + kn = (qn + r ) + kn = (q + k)n + r

which indicates that a has the same remainder as b.
On the other hand, suppose we can write a = q1n + r and b = q2n + r , with the

same remainder r (0 ≤ r < n). Then

a − b = (q1n + r ) − (q2n + r ) = (q1 − q2)n

whence n | a − b. In the language of congruences, we have a ≡ b (mod n).
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Example 4.1. Because the integers −56 and −11 can be expressed in the form

−56 = (−7)9 + 7 −11 = (−2)9 + 7

with the same remainder 7, Theorem 4.1 tells us that −56 ≡ −11 (mod 9). Going in
the other direction, the congruence −31 ≡ 11 (mod 7) implies that −31 and 11 have
the same remainder when divided by 7; this is clear from the relations

−31 = (−5)7 + 4 11 = 1 · 7 + 4

Congruence may be viewed as a generalized form of equality, in the sense that
its behavior with respect to addition and multiplication is reminiscent of ordinary
equality. Some of the elementary properties of equality that carry over to congruences
appear in the next theorem.

Theorem 4.2. Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then the following
properties hold:

(a) a ≡ a (mod n).
(b) If a ≡ b (mod n), then b ≡ a (mod n).
(c) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).
(d) If a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n) and

ac ≡ bd (mod n).
(e) If a ≡ b (mod n), then a + c ≡ b + c (mod n) and ac ≡ bc (mod n).
(f) If a ≡ b (mod n), then ak ≡ bk (mod n) for any positive integer k.

Proof. For any integer a, we have a − a = 0 · n, so that a ≡ a (mod n). Now if
a ≡ b (mod n), then a − b = kn for some integer k. Hence, b − a = −(kn) = (−k)n
and because −k is an integer, this yields property (b).

Property (c) is slightly less obvious: Suppose that a ≡ b (mod n) and also b ≡
c (mod n). Then there exist integers h and k satisfying a − b = hn and b − c = kn. It
follows that

a − c = (a − b) + (b − c) = hn + kn = (h + k)n

which is a ≡ c (mod n) in congruence notation.
In the same vein, if a ≡ b (mod n) and c ≡ d (mod n), then we are assured that

a − b = k1n and c − d = k2n for some choice of k1 and k2. Adding these equations,
we obtain

(a + c) − (b + d) = (a − b) + (c − d)

= k1n + k2n = (k1 + k2)n

or, as a congruence statement, a + c ≡ b + d (mod n). As regards the second assertion
of property (d), note that

ac = (b + k1n)(d + k2n) = bd + (bk2 + dk1 + k1k2n)n

Because bk2 + dk1 + k1k2n is an integer, this says that ac − bd is divisible by n,
whence ac ≡ bd (mod n).

The proof of property (e) is covered by (d) and the fact that c ≡ c (mod n). Finally,
we obtain property (f) by making an induction argument. The statement certainly
holds for k = 1, and we will assume it is true for some fixed k. From (d), we know
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that a ≡ b (mod n) and ak ≡ bk (mod n) together imply that aak ≡ bbk (mod n), or
equivalently ak+1 ≡ bk+1 (mod n). This is the form the statement should take for k + 1,
and so the induction step is complete.

Before going further, we should illustrate that congruences can be a great help
in carrying out certain types of computations.

Example 4.2. Let us endeavor to show that 41 divides 220 − 1. We begin by noting
that 25 ≡ −9 (mod 41), whence (25)4 ≡ (−9)4 (mod 41) by Theorem 4.2(f); in other
words, 220 ≡ 81 · 81 (mod 41). But 81 ≡ −1 (mod 41), and so 81 · 81 ≡ 1 (mod 41).
Using parts (b) and (e) of Theorem 4.2, we finally arrive at

220 − 1 ≡ 81 · 81 − 1 ≡ 1 − 1 ≡ 0 (mod 41)

Thus, 41 | 220 − 1, as desired.

Example 4.3. For another example in the same spirit, suppose that we are asked to
find the remainder obtained upon dividing the sum

1! + 2! + 3! + 4! + · · · + 99! + 100!

by 12. Without the aid of congruences this would be an awesome calculation. The
observation that starts us off is that 4! ≡ 24 ≡ 0 (mod 12); thus, for k ≥ 4,

k! ≡ 4! · 5 · 6 · · · k ≡ 0 · 5 · 6 · · · k ≡ 0 (mod 12)

In this way, we find that

1! + 2! + 3! + 4! + · · · + 100!

≡ 1! + 2! + 3! + 0 + · · · + 0 ≡ 9 (mod 12)

Accordingly, the sum in question leaves a remainder of 9 when divided by 12.

In Theorem 4.1 we saw that if a ≡ b (mod n), then ca ≡ cb (mod n) for any
integer c. The converse, however, fails to hold. As an example, perhaps as simple
as any, note that 2 · 4 ≡ 2 · 1 (mod 6), whereas 4 �≡ 1 (mod 6). In brief: One cannot
unrestrictedly cancel a common factor in the arithmetic of congruences.

With suitable precautions, cancellation can be allowed; one step in this direction,
and an important one, is provided by the following theorem.

Theorem 4.3. If ca ≡ cb (mod n), then a ≡ b (mod n/d), where d = gcd(c, n).

Proof. By hypothesis, we can write

c(a − b) = ca − cb = kn

for some integer k. Knowing that gcd(c, n) = d , there exist relatively prime integers
r and s satisfying c = dr , n = ds. When these values are substituted in the displayed
equation and the common factor d canceled, the net result is

r (a − b) = ks

Hence, s | r (a − b) and gcd(r, s) = 1. Euclid’s lemma yields s | a − b, which may be
recast as a ≡ b (mod s); in other words, a ≡ b (mod n/d).
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Theorem 4.3 gets its maximum force when the requirement that gcd(c, n) = 1 is
added, for then the cancellation may be accomplished without a change in modulus.

Corollary 1. If ca ≡ cb (mod n) and gcd(c, n) = 1, then a ≡ b (mod n).

We take a moment to record a special case of Corollary 1 that we shall have
frequent occasion to use, namely, Corollary 2.

Corollary 2. If ca ≡ cb (mod p) and p � | c, where p is a prime number, then
a ≡ b (mod p).

Proof. The conditions p � | c and p a prime imply that gcd(c, p) = 1.

Example 4.4. Consider the congruence 33 ≡ 15 (mod 9) or, if one prefers,
3 · 11 ≡ 3 · 5 (mod 9). Because gcd(3, 9) = 3, Theorem 4.3 leads to the conclusion that
11 ≡ 5 (mod 3). A further illustration is given by the congruence −35 ≡ 45 (mod 8),
which is the same as 5 · (−7) ≡ 5 · 9 (mod 8). The integers 5 and 8 being relatively
prime, we may cancel the factor 5 to obtain a correct congruence −7 ≡ 9 (mod 8).

Let us call attention to the fact that, in Theorem 4.3, it is unnecessary to stipulate
that c �≡ 0 (mod n). Indeed, if c ≡ 0 (mod n), then gcd(c, n) = n and the conclusion
of the theorem would state that a ≡ b (mod 1); but, as we remarked earlier, this
holds trivially for all integers a and b.

There is another curious situation that can arise with congruences: The product
of two integers, neither of which is congruent to zero, may turn out to be congruent to
zero. For instance, 4 · 3 ≡ 0 (mod 12), but 4 �≡ 0 (mod 12) and 3 �≡ 0 (mod 12). It is a
simple matter to show that if ab ≡ 0 (mod n) and gcd(a, n) = 1, then b ≡ 0 (mod n):
Corollary 1 permits us legitimately to cancel the factor a from both sides of the
congruence ab ≡ a · 0 (mod n). A variation on this is that when ab ≡ 0 (mod p),
with p a prime, then either a ≡ 0 (mod p) or b ≡ 0 (mod p).

PROBLEMS 4.2

1. Prove each of the following assertions:
(a) If a ≡ b (mod n) and m | n, then a ≡ b (mod m).
(b) If a ≡ b (mod n) and c > 0, then ca ≡ cb (mod cn).
(c) If a ≡ b (mod n) and the integers a, b, n are all divisible by d > 0, then

a/d ≡ b/d (mod n/d).
2. Give an example to show that a2 ≡ b2 (mod n) need not imply that a ≡ b

(mod n).
3. If a ≡ b (mod n), prove that gcd(a, n) = gcd(b, n).
4. (a) Find the remainders when 250 and 4165 are divided by 7.

(b) What is the remainder when the following sum is divided by 4?

15 + 25 + 35 + · · · + 995 + 1005

5. Prove that the integer 53103 + 10353 is divisible by 39, and that 111333 + 333111 is divis-
ible by 7.
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6. For n ≥ 1, use congruence theory to establish each of the following divisibility
statements:
(a) 7 | 52n + 3 · 25n−2.
(b) 13 | 3n+2 + 42n+1.
(c) 27 | 25n+1 + 5n+2.
(d) 43 | 6n+2 + 72n+1.

7. For n ≥ 1, show that

(−13)n+1 ≡ (−13)n + (−13)n−1 (mod 181)

[Hint: Notice that (−13)2 ≡ −13 + 1 (mod 181); use induction on n.]
8. Prove the assertions below:

(a) If a is an odd integer, then a2 ≡ 1 (mod 8).
(b) For any integer a, a3 ≡ 0, 1, or 6 (mod 7).
(c) For any integer a, a4 ≡ 0 or 1 (mod 5).
(d) If the integer a is not divisible by 2 or 3, then a2 ≡ 1 (mod 24).

9. If p is a prime satisfying n < p < 2n, show that(
2n

n

)
≡ 0 (mod p)

10. If a1, a2, . . . , an is a complete set of residues modulo n and gcd(a, n) = 1, prove that
aa1, aa2, . . . , aan is also a complete set of residues modulo n.
[Hint: It suffices to show that the numbers in question are incongruent modulo n.]

11. Verify that 0, 1, 2, 22, 23, . . . , 29 form a complete set of residues modulo 11, but that
0, 12, 22, 32, . . . , 102 do not.

12. Prove the following statements:
(a) If gcd(a, n) = 1, then the integers

c, c + a, c + 2a, c + 3a, . . . , c + (n − 1)a

form a complete set of residues modulo n for any c.
(b) Any n consecutive integers form a complete set of residues modulo n.

[Hint: Use part (a).]
(c) The product of any set of n consecutive integers is divisible by n.

13. Verify that if a ≡ b (mod n1) and a ≡ b (mod n2), then a ≡ b (mod n), where the integer
n = lcm(n1, n2). Hence, whenever n1 and n2 are relatively prime, a ≡ b (mod n1n2).

14. Give an example to show that ak ≡ bk (mod n) and k ≡ j (mod n) need not imply that
a j ≡ b j (mod n).

15. Establish that if a is an odd integer, then for any n ≥ 1

a2n ≡ 1 (mod 2n+2)

[Hint: Proceed by induction on n.]
16. Use the theory of congruences to verify that

89 | 244 − 1 and 97 | 248 − 1

17. Prove that whenever ab ≡ cd (mod n) and b ≡ d (mod n), with gcd(b, n) = 1, then
a ≡ c (mod n).

18. If a ≡ b (mod n1) and a ≡ c (mod n2), prove that b ≡ c (mod n), where the integer
n = gcd(n1, n2).
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4.3 BINARY AND DECIMAL REPRESENTATIONS OF INTEGERS

One of the more interesting applications of congruence theory involves finding
special criteria under which a given integer is divisible by another integer. At their
heart, these divisibility tests depend on the notational system used to assign “names”
to integers and, more particularly, to the fact that 10 is taken as the base for our number
system. Let us, therefore, start by showing that, given an integer b > 1, any positive
integer N can be written uniquely in terms of powers of b as

N = ambm + am−1bm−1 + · · · + a2b2 + a1b + a0

where the coefficients ak can take on the b different values 0, 1, 2, . . . , b − 1. For
the Division Algorithm yields integers q1 and a0 satisfying

N = q1b + a0 0 ≤ a0 < b

If q1 ≥ b, we can divide once more, obtaining

q1 = q2b + a1 0 ≤ a1 < b

Now substitute for q1 in the earlier equation to get

N = (q2b + a1)b + a0 = q2b2 + a1b + a0

As long as q2 ≥ b, we can continue in the same fashion. Going one more step:
q2 = q3b + a2, where 0 ≤ a2 < b; hence

N = q3b3 + a2b2 + a1b + a0

Because N > q1 > q2 > · · · ≥ 0 is a strictly decreasing sequence of integers, this
process must eventually terminate, say, at the (m − 1)th stage, where

qm−1 = qmb + am−1 0 ≤ am−1 < b

and 0 ≤ qm < b. Setting am = qm , we reach the representation

N = ambm + am−1bm−1 + · · · + a1b + a0

which was our aim.
To show uniqueness, let us suppose that N has two distinct representations, say,

N = ambm + · · · + a1b + a0 = cmbm + · · · + c1b + c0

with 0 ≤ ai < b for each i and 0 ≤ c j < b for each j (we can use the same m by
simply adding terms with coefficients ai = 0 or c j = 0, if necessary). Subtracting
the second representation from the first gives the equation

0 = dmbm + · · · + d1b + d0

where di = ai − ci for i = 0, 1, . . . , m. Because the two representations for N are
assumed to be different, we must have di �= 0 for some value of i . Take k to be the
smallest subscript for which dk �= 0. Then

0 = dmbm + · · · + dk+1bk+1 + dkbk

and so, after dividing by bk ,

dk = −b(dmbm−k−1 + · · · + dk+1)
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This tells us that b | dk . Now the inequalities 0 ≤ ak < b and 0 ≤ ck < b lead us to
−b < ak − ck < b, or | dk | < b. The only way of reconciling the conditions b | dk

and | dk | < b is to have dk = 0, which is impossible. From this contradiction, we
conclude that the representation of N is unique.

The essential feature in all of this is that the integer N is completely determined
by the ordered array am , am−1, . . . , a1, a0 of coefficients, with the plus signs and the
powers of b being superfluous. Thus, the number

N = ambm + am−1bm−1 + · · · + a2b2 + a1b + a0

may be replaced by the simpler symbol

N = (amam−1 · · · a2a1a0)b

(the right-hand side is not to be interpreted as a product, but only as an abbreviation
for N ). We call this the base b place-value notation for N.

Small values of b give rise to lengthy representation of numbers, but have the
advantage of requiring fewer choices for coefficients. The simplest case occurs when
the base b = 2, and the resulting system of enumeration is called the binary number
system (from the Latin binarius, two). The fact that when a number is written in the
binary system only the integers 0 and 1 can appear as coefficients means that every
positive integer is expressible in exactly one way as a sum of distinct powers of 2.
For example, the integer 105 can be written as

105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 2 + 1

= 26 + 25 + 23 + 1

or, in abbreviated form,

105 = (1101001)2

In the other direction, (1001111)2 translates into

1 · 26 + 0 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 1 · 2 + 1 = 79

The binary system is most convenient for use in modern electronic computing ma-
chines, because binary numbers are represented by strings of zeros and ones; 0 and
1 can be expressed in the machine by a switch (or a similar electronic device) being
either on or off.

We shall frequently wish to calculate the value of ak (mod n) when k is large.
Is there a more efficient way of obtaining the least positive residue than multiplying
a by itself k times before reducing modulo n? One such procedure, called the binary
exponential algorithm, relies on successive squarings, with a reduction modulo n
after each squaring. More specifically, the exponent k is written in binary form, as
k = (amam−1 . . . a2a1a0)2, and the values a2 j

(mod n) are calculated for the powers
of 2, which correspond to the 1’s in the binary representation. These partial results
are then multiplied together to give the final answer.

An illustration should make this process clear.
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Example 4.5. To calculate 5110 (mod 131), first note that the exponent 110 can be
expressed in binary form as

110 = 64 + 32 + 8 + 4 + 2 = (1101110)2

Thus, we obtain the powers 52 j
(mod 131) for 0 ≤ j ≤ 6 by repeatedly squaring while

at each stage reducing each result modulo 131:

52 ≡ 25 (mod 131) 516 ≡ 27 (mod 131)
54 ≡ 101 (mod 131) 532 ≡ 74 (mod 131)
58 ≡ 114 (mod 131) 564 ≡ 105 (mod 131)

When the appropriate partial results—those corresponding to the 1’s in the binary
expansion of 110—are multiplied, we see that

5110 = 564+32+8+4+2

= 564 · 532 · 58 · 54 · 52

≡ 105 · 74 · 114 · 101 · 25 ≡ 60 (mod 131)

As a minor variation of the procedure, one might calculate, modulo 131, the powers
5, 52, 53, 56, 512, 524, 548, 596 to arrive at

5110 = 596 · 512 · 52 ≡ 41 · 117 · 25 ≡ 60 (mod 131)

which would require two fewer multiplications.

We ordinarily record numbers in the decimal system of notation, where b = 10,
omitting the 10-subscript that specifies the base. For instance, the symbol 1492
stands for the more awkward expression

1 · 103 + 4 · 102 + 9 · 10 + 2

The integers 1, 4, 9, and 2 are called the digits of the given number, 1 being the
thousands digit, 4 the hundreds digit, 9 the tens digit, and 2 the units digit. In
technical language we refer to the representation of the positive integers as sums of
powers of 10, with coefficients at most 9, as their decimal representation (from the
Latin decem, ten).

We are about ready to derive criteria for determining whether an integer is
divisible by 9 or 11, without performing the actual division. For this, we need a result
having to do with congruences involving polynomials with integral coefficients.

Theorem 4.4. Let P(x) = ∑m
k=0 ck xk be a polynomial function of x with integral

coefficients ck . If a ≡ b (mod n), then P(a) ≡ P(b) (mod n).

Proof. Because a ≡ b (mod n), part (f) of Theorem 4.2 can be applied to give
ak ≡ bk (mod n) for k = 0, 1, . . . , m. Therefore,

ckak ≡ ckbk (mod n)

for all such k. Adding these m + 1 congruences, we conclude that
m∑

k=0

ckak ≡
m∑

k=0

ckbk (mod n)

or, in different notation, P(a) ≡ P(b) (mod n).
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If P(x) is a polynomial with integral coefficients, we say that a is a solution of
the congruence P(x) ≡ 0 (mod n) if P(a) ≡ 0 (mod n).

Corollary. If a is a solution of P(x) ≡ 0 (mod n) and a ≡ b (mod n), then b also is a
solution.

Proof. From the last theorem, it is known that P(a) ≡ P(b) (mod n). Hence, if a is a
solution of P(x) ≡ 0 (mod n), then P(b) ≡ P(a) ≡ 0 (mod n), making b a solution.

One divisibility test that we have in mind is this. A positive integer is divisible
by 9 if and only if the sum of the digits in its decimal representation is divisible by 9.

Theorem 4.5. Let N = am10m + am−110m−1 + · · · + a110 + a0 be the decimal ex-
pansion of the positive integer N , 0 ≤ ak < 10, and let S = a0 + a1 + · · · + am . Then
9 | N if and only if 9 | S.

Proof. Consider P(x) = ∑m
k=0 ak xk , a polynomial with integral coefficients. The key

observation is that 10 ≡ 1 (mod 9), whence by Theorem 4.4, P(10) ≡ P(1) (mod 9).
But P(10) = N and P(1) = a0 + a1 + · · · + am = S, so that N ≡ S (mod 9). It fol-
lows that N ≡ 0 (mod 9) if and only if S ≡ 0 (mod 9), which is what we wanted to
prove.

Theorem 4.4 also serves as the basis for a well-known test for divisibility by 11:
an integer is divisible by 11 if and only if the alternating sum of its digits is divisible
by 11. We state this more precisely by Theorem 4.6.

Theorem 4.6. Let N = am10m + am−110m−1 + · · · + a110 + a0 be the decimal
expansion of the positive integer N , 0 ≤ ak < 10, and let T = a0 − a1 + a2 − · · ·
+ (−1)mam . Then 11 | N if and only if 11 | T .

Proof. As in the proof of Theorem 4.5, put P(x) = ∑m
k=0 ak xk . Because 10 ≡ −1

(mod 11), we get P(10) ≡ P(−1) (mod 11). But P(10) = N , whereas P(−1) =
a0 − a1 + a2 − · · · + (−1)mam = T , so that N ≡ T (mod 11). The implication is that
either both N and T are divisible by 11 or neither is divisible by 11.

Example 4.6. To see an illustration of the last two results, consider the integer
N = 1,571,724. Because the sum

1 + 5 + 7 + 1 + 7 + 2 + 4 = 27

is divisible by 9, Theorem 4.5 guarantees that 9 divides N . It also can be divided by
11; for, the alternating sum

4 − 2 + 7 − 1 + 7 − 5 + 1 = 11

is divisible by 11.

Congruence theory is frequently used to append an extra check digit to iden-
tification numbers, in order to recognize transmission errors or forgeries. Personal
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identification numbers of some kind appear on passports, credit cards, bank accounts,
and a variety of other settings.

Some banks use an eight-digit identification number a1a2 . . . a8 together with
a final check digit a9. The check digit is usually obtained by multiplying the digits
ai (1 ≤ i ≤ 8) by certain “weights” and calculating the sum of the weighted products
modulo 10. For instance, the check digit might be chosen to satisfy

a9 ≡ 7a1 + 3a2 + 9a3 + 7a4 + 3a5 + 9a6 + 7a7 + 3a8 (mod 10)

The identification number 81504216 would then have check digit

a9 ≡ 7 · 8 + 3 · 1 + 9 · 5 + 7 · 0 + 3 · 4 + 9 · 2 + 7 · 1 + 3 · 6 ≡ 9 (mod 10)

so that 815042169 would be printed on the check.
This weighting scheme for assigning check digits detects any single-digit error

in the identification number. For suppose that the digit ai is replaced by a different
a′

i . By the manner in which the check digit is calculated, the difference between the
correct a9 and the new a′

9 is

a9 − a′
9 ≡ k(ai − a′

i ) (mod 10)

where k is 7, 3, or 9 depending on the position of a′
i . Because k(ai − a′

i ) �≡ 0 (mod 10),
it follows that a9 �= a′

9 and the error is apparent. Thus, if the valid number 81504216
were incorrectly entered as 81504316 into a computer programmed to calculate
check digits, an 8 would come up rather than the expected 9.

The modulo 10 approach is not entirely effective, for it does not always detect
the common error of transposing distinct adjacent entries a and b within the string
of digits. To illustrate: the identification numbers 81504216 and 81504261 have
the same check digit 9 when our example weights are used. (The problem occurs
when |a − b| = 5.) More sophisticated methods are available, with larger moduli
and different weights, that would prevent this possible error.

PROBLEMS 4.3

1. Use the binary exponentiation algorithm to compute both 1953 (mod 503) and 14147

(mod 1537).
2. Prove the following statements:

(a) For any integer a, the units digit of a2 is 0, 1, 4, 5, 6, or 9.
(b) Any one of the integers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 can occur as the units digit of a3.
(c) For any integer a, the units digit of a4 is 0, 1, 5, or 6.
(d) The units digit of a triangular number is 0, 1, 3, 5, 6, or 8.

3. Find the last two digits of the number 999
.

[Hint: 99 ≡ 9 (mod 10); hence, 999 = 99+10k ; notice that 99 ≡ 89 (mod100).]
4. Without performing the divisions, determine whether the integers 176521221 and

149235678 are divisible by 9 or 11.
5. (a) Obtain the following generalization of Theorem 4.6: If the integer N is represented

in the base b by

N = ambm + · · · + a2b2 + a1b + a0 0 ≤ ak ≤ b − 1

then b − 1 | N if and only if b − 1 | (am + · · · + a2 + a1 + a0).
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(b) Give criteria for the divisibility of N by 3 and 8 that depend on the digits of N when
written in the base 9.

(c) Is the integer (447836)9 divisible by 3 and 8?
6. Working modulo 9 or 11, find the missing digits in the calculations below:

(a) 51840 · 273581 = 1418243x040.
(b) 2x99561 = [3(523 + x)]2.
(c) 2784x = x · 5569.
(d) 512 · 1x53125 = 1000000000.

7. Establish the following divisibility criteria:
(a) An integer is divisible by 2 if and only if its units digit is 0, 2, 4, 6, or 8.
(b) An integer is divisible by 3 if and only if the sum of its digits is divisible by 3.
(c) An integer is divisible by 4 if and only if the number formed by its tens and units

digits is divisible by 4.
[Hint: 10k ≡ 0 (mod 4) for k ≥ 2.]

(d) An integer is divisible by 5 if and only if its units digit is 0 or 5.
8. For any integer a, show that a2 − a + 7 ends in one of the digits 3, 7, or 9.
9. Find the remainder when 44444444 is divided by 9.

[Hint: Observe that 23 ≡ −1 (mod 9).]
10. Prove that no integer whose digits add up to 15 can be a square or a cube.

[Hint: For any a, a3 ≡ 0, 1, or 8 (mod 9).]
11. Assuming that 495 divides 273x49y5, obtain the digits x and y.
12. Determine the last three digits of the number 7999.

[Hint: 74n ≡ (1 + 400)n ≡ 1 + 400n (mod 1000).]
13. If tn denotes the nth triangular number, show that tn+2k ≡ tn (mod k); hence, tn and tn+20

must have the same last digit.
14. For any n ≥ 1, prove that there exists a prime with at least n of its digits equal to 0.

[Hint: Consider the arithmetic progression 10n+1k + 1 for k = 1, 2, . . . .]
15. Find the values of n ≥ 1 for which 1! + 2! + 3! + · · · + n! is a perfect square.

[Hint: Problem 2(a).]
16. Show that 2n divides an integer N if and only if 2n divides the number made up of the

last n digits of N .
[Hint: 10k = 2k5k ≡ 0 (mod 2n) for k ≥ n.]

17. Let N = am10m + · · · + a2102 + a110 + a0, where 0 ≤ ak ≤ 9, be the decimal expan-
sion of a positive integer N .
(a) Prove that 7, 11, and 13 all divide N if and only if 7, 11, and 13 divide the integer

M = (100a2 + 10a1 + a0) − (100a5 + 10a4 + a3)

+ (100a8 + 10a7 + a6) − · · ·

[Hint: If n is even, then 103n ≡ 1, 103n+1 ≡ 10, 103n+2 ≡ 100 (mod 1001); if n is
odd, then 103n ≡ −1, 103n+1 ≡ −10, 103n+2 ≡ −100 (mod 1001).]

(b) Prove that 6 divides N if and only if 6 divides the integer

M = a0 + 4a1 + 4a2 + · · · + 4am

18. Without performing the divisions, determine whether the integer 1010908899 is divisible
by 7, 11, and 13.

19. (a) Given an integer N, let M be the integer formed by reversing the order of the digits
of N (for example, if N = 6923, then M = 3296). Verify that N − M is divisible
by 9.
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(b) A palindrome is a number that reads the same backward as forward (for instance,
373 and 521125 are palindromes). Prove that any palindrome with an even number
of digits is divisible by 11.

20. Given a repunit Rn , show that
(a) 9 | Rn if and only if 9 | n.
(b) 11 | Rn if and only if n is even.

21. Factor the repunit R6 = 111111 into a product of primes.
[Hint: Problem 17(a).]

22. Explain why the following curious calculations hold:

1 · 9 + 2 = 11

12 · 9 + 3 = 111

123 · 9 + 4 = 1111

1234 · 9 + 5 = 11111

12345 · 9 + 6 = 111111

123456 · 9 + 7 = 1111111

1234567 · 9 + 8 = 11111111

12345678 · 9 + 9 = 111111111

123456789 · 9 + 10 = 1111111111

[Hint: Show that

(10n−1 + 2 · 10n−2 + 3 · 10n−3 + · · · + n)(10 − 1)

+(n + 1) = 10n+1 − 1

9
.]

23. An old and somewhat illegible invoice shows that 72 canned hams were purchased for
$x 67.9y. Find the missing digits.

24. If 792 divides the integer 13xy 45z, find the digits x , y, and z.
[Hint: By Problem 17, 8 | 45z.]

25. For any prime p > 3, prove that 13 divides 102p − 10p + 1.
26. Consider the eight-digit bank identification number a1a2 . . . a8, which is followed by a

ninth check digit a9 chosen to satisfy the congruence

a9 ≡ 7a1 + 3a2 + 9a3 + 7a4 + 3a5 + 9a6 + 7a7 + 3a8 (mod 10)

(a) Obtain the check digits that should be appended to the two numbers 55382006 and
81372439.

(b) The bank identification number 237a418538 has an illegible fourth digit. Determine
the value of the obscured digit.

27. The International Standard Book Number (ISBN) used in many libraries consists of nine
digits a1a2 . . . a9 followed by a tenth check digit a10, which satisfies

a10 ≡
9∑

k=1

kak (mod 11)

Determine whether each of the ISBNs below is correct:
(a) 0-07-232569-0 (United States).
(b) 91-7643-497-5 (Sweden).
(c) 1-56947-303-10 (England).

28. When printing the ISBN a1a2 . . . a9, two unequal digits were transposed. Show that the
check digits detected this error.
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4.4 LINEAR CONGRUENCES AND THE CHINESE
REMAINDER THEOREM

This is a convenient place in our development of number theory at which to inves-
tigate the theory of linear congruences: an equation of the form ax ≡ b (mod n)
is called a linear congruence, and by a solution of such an equation we mean an
integer x0 for which ax0 ≡ b (mod n). By definition, ax0 ≡ b (mod n) if and only
if n | ax0 − b or, what amounts to the same thing, if and only if ax0 − b = ny0 for
some integer y0. Thus, the problem of finding all integers that will satisfy the lin-
ear congruence ax ≡ b (mod n) is identical with that of obtaining all solutions of
the linear Diophantine equation ax − ny = b. This allows us to bring the results of
Chapter 2 into play.

It is convenient to treat two solutions of ax ≡ b (mod n) that are congruent
modulo n as being “equal” even though they are not equal in the usual sense. For
instance, x = 3 and x = −9 both satisfy the congruence 3x ≡ 9 (mod 12); because
3 ≡ −9 (mod 12), they are not counted as different solutions. In short: When we refer
to the number of solutions of ax ≡ b (mod n), we mean the number of incongruent
integers satisfying this congruence.

With these remarks in mind, the principal result is easy to state.

Theorem 4.7. The linear congruence ax ≡ b (mod n) has a solution if and only if d | b,
where d = gcd(a, n). If d | b, then it has d mutually incongruent solutions modulo n.

Proof. We already have observed that the given congruence is equivalent to the linear
Diophantine equation ax − ny = b. From Theorem 2.9, it is known that the latter
equation can be solved if and only if d | b; moreover, if it is solvable and x0, y0 is one
specific solution, then any other solution has the form

x = x0 + n

d
t y = y0 + a

d
t

for some choice of t .
Among the various integers satisfying the first of these formulas, consider those

that occur when t takes on the successive values t = 0, 1, 2, . . . , d − 1:

x0, x0 + n

d
, x0 + 2n

d
, . . . , x0 + (d − 1)n

d

We claim that these integers are incongruent modulo n, and all other such integers x
are congruent to some one of them. If it happened that

x0 + n

d
t1 ≡ x0 + n

d
t2 (mod n)

where 0 ≤ t1 < t2 ≤ d − 1, then we would have

n

d
t1 ≡ n

d
t2 (mod n)

Now gcd(n/d, n) = n/d , and therefore by Theorem 4.3 the factor n/d could be can-
celed to arrive at the congruence

t1 ≡ t2 (mod d)
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which is to say that d | t2 − t1. But this is impossible in view of the inequality
0 < t2 − t1 < d.

It remains to argue that any other solution x0 + (n/d)t is congruent modulo n to
one of the d integers listed above. The Division Algorithm permits us to write t as
t = qd + r , where 0 ≤ r ≤ d − 1. Hence

x0 + n

d
t = x0 + n

d
(qd + r )

= x0 + nq + n

d
r

≡ x0 + n

d
r (mod n)

with x0 + (n/d)r being one of our d selected solutions. This ends the proof.

The argument that we gave in Theorem 4.7 brings out a point worth stating ex-
plicitly: If x0 is any solution of ax ≡ b (mod n), then the d = gcd(a, n) incongruent
solutions are given by

x0, x0 + n

d
, x0 + 2

(n

d

)
, . . . , x0 + (d − 1)

(n

d

)

For the reader’s convenience, let us also record the form Theorem 4.7 takes in
the special case in which a and n are assumed to be relatively prime.

Corollary. If gcd(a, n) = 1, then the linear congruence ax ≡ b (mod n) has a unique
solution modulo n.

Given relatively prime integers a and n, the congruence ax ≡ 1 (mod n) has a
unique solution. This solution is sometimes called the (multiplicative) inverse of a
modulo n.

We now pause to look at two concrete examples.

Example 4.7. First consider the linear congruence 18x ≡ 30 (mod 42). Because
gcd(18, 42) = 6 and 6 surely divides 30, Theorem 4.7 guarantees the existence of
exactly six solutions, which are incongruent modulo 42. By inspection, one solution
is found to be x = 4. Our analysis tells us that the six solutions are as follows:

x ≡ 4 + (42/6)t ≡ 4 + 7t (mod 42) t = 0, 1, . . . , 5

or, plainly enumerated,

x ≡ 4, 11, 18, 25, 32, 39 (mod 42)

Example 4.8. Let us solve the linear congruence 9x ≡ 21 (mod 30). At the out-
set, because gcd(9, 30) = 3 and 3 | 21, we know that there must be three incongruent
solutions.

One way to find these solutions is to divide the given congruence through by
3, thereby replacing it by the equivalent congruence 3x ≡ 7 (mod 10). The relative
primeness of 3 and 10 implies that the latter congruence admits a unique solution
modulo 10. Although it is not the most efficient method, we could test the integers
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0, 1, 2, . . . ,9 in turn until the solution is obtained. A better way is this: Multiply both
sides of the congruence 3x ≡ 7 (mod 10) by 7 to get

21x ≡ 49 (mod 10)

which reduces to x ≡ 9 (mod 10). (This simplification is no accident, for the multiples
0 · 3, 1 · 3, 2 · 3, . . . , 9 · 3 form a complete set of residues modulo 10; hence, one
of them is necessarily congruent to 1 modulo 10.) But the original congruence was
given modulo 30, so that its incongruent solutions are sought among the integers 0, 1,
2, . . . , 29. Taking t = 0, 1, 2, in the formula

x = 9 + 10t

we obtain 9, 19, 29, whence

x ≡ 9 (mod 30) x ≡ 19 (mod 30) x ≡ 29 (mod 30)

are the required three solutions of 9x ≡ 21 (mod 30).
A different approach to the problem is to use the method that is suggested in the

proof of Theorem 4.7. Because the congruence 9x ≡ 21(mod 30) is equivalent to the
linear Diophantine equation

9x − 30y = 21

we begin by expressing 3 = gcd(9, 30) as a linear combination of 9 and 30. It is found,
either by inspection or by using the Euclidean Algorithm, that 3 = 9(−3) + 30 · 1, so
that

21 = 7 · 3 = 9(−21) − 30(−7)

Thus, x = −21, y = −7 satisfy the Diophantine equation and, in consequence, all
solutions of the congruence in question are to be found from the formula

x = −21 + (30/3)t = −21 + 10t

The integers x = −21 + 10t , where t = 0, 1, 2, are incongruent modulo 30 (but all are
congruent modulo 10); thus, we end up with the incongruent solutions

x ≡ −21 (mod 30) x ≡ −11 (mod 30) x ≡ −1 (mod 30)

or, if one prefers positive numbers, x ≡ 9, 19, 29 (mod 30).

Having considered a single linear congruence, it is natural to turn to the problem
of solving a system of simultaneous linear congruences:

a1x ≡ b1 (mod m1), a2x ≡ b2 (mod m2), . . . , ar x ≡ br (mod mr )

We shall assume that the moduli mk are relatively prime in pairs. Evidently, the
system will admit no solution unless each individual congruence is solvable; that
is, unless dk | bk for each k, where dk = gcd(ak, mk). When these conditions are
satisfied, the factor dk can be canceled in the kth congruence to produce a new
system having the same set of solutions as the original one:

a′
1x ≡ b′

1 (mod n1), a′
2x ≡ b′

2 (mod n2), . . . , a′
r x ≡ b′

r (mod nr )
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where nk = mk/dk and gcd(ni , n j ) = 1 for i �= j ; in addition, gcd(a′
i , ni ) = 1. The

solutions of the individual congruences assume the form

x ≡ c1 (mod n1), x ≡ c2 (mod n2), . . . , x ≡ cr (mod nr )

Thus, the problem is reduced to one of finding a simultaneous solution of a system
of congruences of this simpler type.

The kind of problem that can be solved by simultaneous congruences has a
long history, appearing in the Chinese literature as early as the 1st century A.D.

Sun-Tsu asked: Find a number that leaves the remainders 2, 3, 2 when divided by
3, 5, 7, respectively. (Such mathematical puzzles are by no means confined to a single
cultural sphere; indeed, the same problem occurs in the Introductio Arithmeticae
of the Greek mathematician Nicomachus, circa 100 A.D.) In honor of their early
contributions, the rule for obtaining a solution usually goes by the name of the
Chinese Remainder Theorem.

Theorem 4.8 Chinese Remainder Theorem. Let n1, n2, . . . , nr be positive integers
such that gcd(ni , n j ) = 1 for i �= j . Then the system of linear congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ar (mod nr )

has a simultaneous solution, which is unique modulo the integer n1n2 · · · nr .

Proof. We start by forming the product n = n1n2 · · · nr . For each k = 1, 2, . . . , r , let

Nk = n

nk
= n1 · · · nk−1nk+1 · · · nr

In words, Nk is the product of all the integers ni with the factor nk omitted. By hy-
pothesis, the ni are relatively prime in pairs, so that gcd(Nk, nk) = 1. According to the
theory of a single linear congruence, it is therefore possible to solve the congruence
Nk x ≡ 1 (mod nk); call the unique solution xk . Our aim is to prove that the integer

x̄ = a1 N1x1 + a2 N2x2 + · · · + ar Nr xr

is a simultaneous solution of the given system.
First, observe that Ni ≡ 0 (mod nk) for i �= k, because nk | Ni in this case. The

result is

x̄ = a1 N1x1 + · · · + ar Nr xr ≡ ak Nk xk (mod nk)

But the integer xk was chosen to satisfy the congruence Nk x ≡ 1 (mod nk), which
forces

x̄ ≡ ak · 1 ≡ ak (mod nk)

This shows that a solution to the given system of congruences exists.
As for the uniqueness assertion, suppose that x ′ is any other integer that satisfies

these congruences. Then

x̄ ≡ ak ≡ x ′ (mod nk) k = 1, 2, . . . , r
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and so nk | x̄ − x ′ for each value of k. Because gcd(ni , n j ) = 1, Corollary 2 to
Theorem 2.4 supplies us with the crucial point that n1n2 · · · nr | x̄ − x ′; hence
x̄ ≡ x ′ (mod n). With this, the Chinese Remainder Theorem is proven.

Example 4.9. The problem posed by Sun-Tsu corresponds to the system of three
congruences

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

In the notation of Theorem 4.8, we have n = 3 · 5 · 7 = 105 and

N1 = n

3
= 35 N2 = n

5
= 21 N3 = n

7
= 15

Now the linear congruences

35x ≡ 1 (mod 3) 21x ≡ 1 (mod 5) 15x ≡ 1 (mod 7)

are satisfied by x1 = 2, x2 = 1, x3 = 1, respectively. Thus, a solution of the system is
given by

x = 2 · 35 · 2 + 3 · 21 · 1 + 2 · 15 · 1 = 233

Modulo 105, we get the unique solution x = 233 ≡ 23 (mod 105).

Example 4.10. For a second illustration, let us solve the linear congruence

17x ≡ 9 (mod 276)

Because 276 = 3 · 4 · 23, this is equivalent to finding a solution for the system of
congruences

17x ≡ 9 (mod 3) or x ≡ 0 (mod 3)

17x ≡ 9 (mod 4) x ≡ 1 (mod 4)

17x ≡ 9 (mod 23) 17x ≡ 9 (mod 23)

Note that if x ≡ 0 (mod 3), then x = 3k for any integer k. We substitute into the second
congruence of the system and obtain

3k ≡ 1 (mod 4)

Multiplication of both sides of this congruence by 3 gives us

k ≡ 9k ≡ 3 (mod 4)

so that k = 3 + 4 j , where j is an integer. Then

x = 3(3 + 4 j) = 9 + 12 j

For x to satisfy the last congruence, we must have

17(9 + 12 j) ≡ 9 (mod 23)

or 204 j ≡ −144 (mod 23), which reduces to 3 j ≡ 6 (mod 23); in consequence, j ≡ 2
(mod 23). This yields j = 2 + 23t , with t an integer, whence

x = 9 + 12(2 + 23t) = 33 + 276t
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All in all, x ≡ 33 (mod 276) provides a solution to the system of congruences and, in
turn, a solution to 17x ≡ 9 (mod 276).

We should say a few words about linear congruences in two variables; that is,
congruences of the form

ax + by ≡ c (mod n)

In analogy with Theorem 4.7, such a congruence has a solution if and only if
gcd(a, b, n) divides c. The condition for solvability holds if either gcd(a, n) = 1
or gcd(b, n) = 1. Say gcd(a, n) = 1. When the congruence is expressed as

ax ≡ c − by (mod n)

the corollary to Theorem 4.7 guarantees a unique solution x for each of the
n incongruent values of y. Take as a simple illustration 7x + 4y ≡ 5 (mod 12),
that would be treated as 7x ≡ 5 − 4y (mod 12). Substitution of y ≡ 5 (mod 12)
gives 7x ≡ −15 (mod 12); but this is equivalent to −5x ≡ −15 (mod 12) so that
x ≡ 3 (mod 12). It follows that x ≡ 3 (mod 12), y ≡ 5 (mod 12) is one of the 12
incongruent solutions of 7x + 4y ≡ 5 (mod 12). Another solution having the same
value of x is x ≡ 3 (mod 12),y ≡ 8 (mod 12).

The focus of our concern here is how to solve a system of two linear congruences
in two variables with the same modulus. The proof of the coming theorem adopts
the familiar procedure of eliminating one of the unknowns.

Theorem 4.9. The system of linear congruences

ax + by ≡ r (mod n)

cx + dy ≡ s (mod n)

has a unique solution modulo n whenever gcd(ad − bc, n) = 1.

Proof. Let us multiply the first congruence of the system by d, the second congruence
by b, and subtract the lower result from the upper. These calculations yield

(ad − bc)x ≡ dr − bs (mod n) (1)

The assumption gcd(ad − bc, n) = 1 ensures that the congruence

(ad − bc)z ≡ 1 (mod n)

posseses a unique solution; denote the solution by t . When congruence (1) is multiplied
by t , we obtain

x ≡ t(dr − bs) (mod n)

A value for y is found by a similar elimination process. That is, multiply the first
congruence of the system by c, the second one by a, and subtract to end up with

(ad − bc)y ≡ as − cr (mod n) (2)

Multiplication of this congruence by t leads to

y ≡ t(as − cr ) (mod n)

A solution of the system is now established.

We close this section with an example illustrating Theorem 4.9.
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Example 4.11. Consider the system

7x + 3y ≡ 10 (mod 16)

2x + 5y ≡ 9 (mod 16)

Because gcd(7 · 5 − 2 · 3, 16) = gcd(29, 16) = 1, a solution exists. It is obtained by
the method developed in the proof of Theorem 4.9. Multiplying the first congruence
by 5, the second one by 3, and subtracting, we arrive at

29x ≡ 5 · 10 − 3 · 9 ≡ 23 (mod 16)

or, what is the same thing, 13x ≡ 7 (mod 16). Multiplication of this congruence by 5
(noting that 5 · 13 ≡ 1 (mod 16)) produces x ≡ 35 ≡ 3 (mod 16). When the variable
x is eliminated from the system of congruences in a like manner, it is found that

29y ≡ 7 · 9 − 2 · 10 ≡ 43 (mod 16)

But then 13y ≡ 11 (mod 16), which upon multiplication by 5, results in y ≡ 55 ≡
7 (mod 16). The unique solution of our system turns out to be

x ≡ 3 (mod 16) y ≡ 7 (mod 16)

PROBLEMS 4.4

1. Solve the following linear congruences:
(a) 25x ≡ 15 (mod 29).
(b) 5x ≡ 2 (mod 26).
(c) 6x ≡ 15 (mod 21).
(d) 36x ≡ 8 (mod 102).
(e) 34x ≡ 60 (mod 98).
(f) 140x ≡ 133 (mod 301).

[Hint: gcd(140, 301) = 7.]
2. Using congruences, solve the Diophantine equations below:

(a) 4x + 51y = 9.
[Hint: 4x ≡ 9 (mod 51) gives x = 15 + 51t , whereas 51y ≡ 9 (mod 4) gives
y = 3 + 4s. Find the relation between s and t .]

(b) 12x + 25y = 331.
(c) 5x − 53y = 17.

3. Find all solutions of the linear congruence 3x − 7y ≡ 11 (mod 13).
4. Solve each of the following sets of simultaneous congruences:

(a) x ≡ 1 (mod 3), x ≡ 2 (mod 5), x ≡ 3 (mod 7).
(b) x ≡ 5 (mod 11), x ≡ 14 (mod 29), x ≡ 15 (mod 31).
(c) x ≡ 5 (mod 6), x ≡ 4 (mod 11), x ≡ 3 (mod 17).
(d) 2x ≡ 1 (mod 5), 3x ≡ 9 (mod 6), 4x ≡ 1 (mod 7), 5x ≡ 9 (mod 11).

5. Solve the linear congruence 17x ≡ 3 (mod 2 · 3 · 5 · 7) by solving the system

17x ≡ 3 (mod 2) 17x ≡ 3 (mod 3)

17x ≡ 3 (mod 5) 17x ≡ 3 (mod 7)

6. Find the smallest integer a > 2 such that

2 | a, 3 | a + 1, 4 | a + 2, 5 | a + 3, 6 | a + 4
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7. (a) Obtain three consecutive integers, each having a square factor.
[Hint: Find an integer a such that 22 | a, 32 | a + 1, 52 | a + 2.]

(b) Obtain three consecutive integers, the first of which is divisible by a square, the
second by a cube, and the third by a fourth power.

8. (Brahmagupta, 7th century A.D.) When eggs in a basket are removed 2, 3, 4, 5, 6 at a
time there remain, respectively, 1, 2, 3, 4, 5 eggs. When they are taken out 7 at a time,
none are left over. Find the smallest number of eggs that could have been contained in
the basket.

9. The basket-of-eggs problem is often phrased in the following form: One egg remains
when the eggs are removed from the basket 2, 3, 4, 5, or 6 at a time; but, no eggs remain
if they are removed 7 at a time. Find the smallest number of eggs that could have been
in the basket.

10. (Ancient Chinese Problem.) A band of 17 pirates stole a sack of gold coins. When they
tried to divide the fortune into equal portions, 3 coins remained. In the ensuing brawl over
who should get the extra coins, one pirate was killed. The wealth was redistributed, but
this time an equal division left 10 coins. Again an argument developed in which another
pirate was killed. But now the total fortune was evenly distributed among the survivors.
What was the least number of coins that could have been stolen?

11. Prove that the congruences

x ≡ a (mod n) and x ≡ b (mod m)

admit a simultaneous solution if and only if gcd(n, m) | a − b; if a solution exists, confirm
that it is unique modulo lcm(n, m).

12. Use Problem 11 to show that the following system does not possess a solution:

x ≡ 5 (mod 6) and x ≡ 7 (mod 15)

13. If x ≡ a (mod n), prove that either x ≡ a (mod 2n) or x ≡ a + n (mod 2n).
14. A certain integer between 1 and 1200 leaves the remainders 1, 2, 6 when divided by 9,

11, 13, respectively. What is the integer?
15. (a) Find an integer having the remainders 1, 2, 5, 5 when divided by 2, 3, 6, 12, respec-

tively. (Yih-hing, died 717).
(b) Find an integer having the remainders 2, 3, 4, 5 when divided by 3, 4, 5, 6, respectively.

(Bhaskara, born 1114).
(c) Find an integer having the remainders 3, 11, 15 when divided by 10, 13, 17, respec-

tively. (Regiomontanus, 1436–1476).
16. Let tn denote the nth triangular number. For which values of n does tn divide

t2
1 + t2

2 + · · · + t2
n

[Hint: Because t2
1 + t2

2 + · · · + t2
n = tn(3n3 + 12n2 + 13n + 2)/30, it suffices to deter-

mine those n satisfying 3n3 + 12n2 + 13n + 2 ≡ 0 (mod 2 · 3 · 5).]
17. Find the solutions of the system of congruences:

3x + 4y ≡ 5 (mod 13)

2x + 5y ≡ 7 (mod 13)

18. Obtain the two incongruent solutions modulo 210 of the system

2x ≡ 3 (mod 5)

4x ≡ 2 (mod 6)

3x ≡ 2 (mod 7)
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19. Obtain the eight incongruent solutions of the linear congruence 3x + 4y ≡ 5 (mod 8).
20. Find the solutions of each of the following systems of congruences:

(a) 5x + 3y ≡ 1 (mod 7)

3x + 2y ≡ 4 (mod 7).
(b) 7x + 3y ≡ 6 (mod 11)

4x + 2y ≡ 9 (mod 11).
(c) 11x + 5y ≡ 7 (mod 20)

6x + 3y ≡ 8 (mod 20).
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CHAPTER

5
FERMAT’S THEOREM

And perhaps posterity will thank me for having shown it that the
ancients did not know everything.

P. DE FERMAT

5.1 PIERRE DE FERMAT

What the ancient world had known was largely forgotten during the intellectual
torpor of the Dark Ages, and it was only after the 12th century that Western Europe
again became conscious of mathematics. The revival of classical scholarship was
stimulated by Latin translations from the Greek and, more especially, from the
Arabic. The Latinization of Arabic versions of Euclid’s great treatise, the Elements,
first appeared in 1120. The translation was not a faithful rendering of the Elements,
having suffered successive, inaccurate translations from the Greek—first into Arabic,
then into Castilian, and finally into Latin—done by copyists not versed in the content
of the work. Nevertheless, this much-used copy, with its accumulation of errors,
served as the foundation of all editions known in Europe until 1505, when the Greek
text was recovered.

With the fall of Constantinople to the Turks in 1453, the Byzantine schol-
ars who had served as the major custodians of mathematics brought the ancient
masterpieces of Greek learning to the West. It is reported that a copy of what sur-
vived of Diophantus’s Arithmetica was found in the Vatican library around 1462 by
Johannes Müller (better known as Regiomontanus from the Latin name of his native
town, Königsberg). Presumably, it had been brought to Rome by the refugees from
Byzantium. Regiomontanus observed, “In these books the very flower of the whole

85
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Pierre de Fermat
(1601–1665)

(David Eugene Smith Collection, Rare Book
 and Manuscript Library, Columbia University)

of arithmetic lies hid,” and tried to interest others in translating it. Notwithstanding
the attention that was called to the work, it remained practically a closed book until
1572 when the first translation and printed edition was brought out by the German
professor Wilhelm Holzmann, who wrote under the Grecian form of his name,
Xylander. The Arithmetica became fully accessible to European mathematicians
when Claude Bachet—borrowing liberally from Xylander—published (1621) the
original Greek text, along with a Latin translation containing notes and comments.
The Bachet edition probably has the distinction of being the work that first directed
the attention of Fermat to the problems of number theory.

Few if any periods were so fruitful for mathematics as was the 17th century;
Northern Europe alone produced as many men of outstanding ability as had ap-
peared during the preceding millennium. At a time when such names as Desargues,
Descartes, Pascal, Wallis, Bernoulli, Leibniz, and Newton were becoming famous, a
certain French civil servant, Pierre de Fermat (1601–1665), stood as an equal among
these brilliant scholars. Fermat, the “Prince of Amateurs,” was the last great mathe-
matician to pursue the subject as a sideline to a nonscientific career. By profession a
lawyer and magistrate attached to the provincial parliament at Toulouse, he sought
refuge from controversy in the abstraction of mathematics. Fermat evidently had no
particular mathematical training and he evidenced no interest in its study until he
was past 30; to him, it was merely a hobby to be cultivated in leisure time. Yet no
practitioner of his day made greater discoveries or contributed more to the advance-
ment of the discipline: one of the inventors of analytic geometry (the actual term was
coined in the early 19th century), he laid the technical foundations of differential
and integral calculus and, with Pascal, established the conceptual guidelines of the
theory of probability. Fermat’s real love in mathematics was undoubtedly number
theory, which he rescued from the realm of superstition and occultism where it had
long been imprisoned. His contributions here overshadow all else; it may well be
said that the revival of interest in the abstract side of number theory began with
Fermat.
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Fermat preferred the pleasure he derived from mathematical research itself to any
reputation that it might bring him; indeed, he published only one major manuscript
during his lifetime and that just 5 years before his death, using the concealing initials
M.P.E.A.S. Adamantly refusing to put his work in finished form, he thwarted several
efforts by others to make the results available in print under his name. In partial
compensation for his lack of interest in publication, Fermat carried on a voluminous
correspondence with contemporary mathematicians. Most of what little we know
about his investigations is found in the letters to friends with whom he exchanged
problems and to whom he reported his successes. They did their best to publicize
Fermat’s talents by passing these letters from hand to hand or by making copies,
which were dispatched over the Continent.

As his parliamentary duties demanded an ever greater portion of his time, Fermat
was given to inserting notes in the margin of whatever book he happened to be
using. Fermat’s personal copy of the Bachet edition of Diophantus held in its margin
many of his famous theorems in number theory. These were discovered by his son
Samuel 5 years after Fermat’s death. His son brought out a new edition of the
Arithmetica incorporating Fermat’s celebrated marginalia. Because there was little
space available, Fermat’s habit had been to jot down some result and omit all steps
leading to the conclusion. Posterity has wished many times that the margins of the
Arithmetica had been wider or that Fermat had been a little less secretive about his
methods.

5.2 FERMAT’S LITTLE THEOREM AND PSEUDOPRIMES

The most significant of Fermat’s correspondents in number theory was Bernhard
Frénicle de Bessy (1605–1675), an official at the French mint who was renowned for
his gift of manipulating large numbers. (Frénicle’s facility in numerical calculation is
revealed by the following incident: On hearing that Fermat had proposed the problem
of finding cubes that when increased by their proper divisors become squares, as is the
case with 73 + (1 + 7 + 72) = 202, he immediately gave four different solutions, and
supplied six more the next day.) Though in no way Fermat’s equal as a mathematician,
Frénicle alone among his contemporaries could challenge Fermat in number theory
and Frénicle’s challenges had the distinction of coaxing out of Fermat some of his
carefully guarded secrets. One of the most striking is the theorem that states: If p
is a prime and a is any integer not divisible by p, then p divides a p−1 − 1. Fermat
communicated the result in a letter to Frénicle dated October 18, 1640, along with
the comment, “I would send you the demonstration, if I did not fear its being too
long.” This theorem has since become known as “Fermat’s Little Theorem,” or just
“Fermat’s Theorem,” to distinguish it from Fermat’s “Great” or “Last Theorem,”
which is the subject of Chapter 12. Almost 100 years were to elapse before Euler
published the first proof of the little theorem in 1736. Leibniz, however, seems not
to have received his share of recognition, for he left an identical argument in an
unpublished manuscript sometime before 1683.

We now proceed to a proof of Fermat’s theorem.
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Theorem 5.1 Fermat’s theorem. Let p be a prime and suppose that p � | a. Then
a p−1 ≡ 1 (mod p).

Proof. We begin by considering the first p − 1 positive multiples of a; that is, the
integers

a, 2a, 3a, . . . , (p − 1)a

None of these numbers is congruent modulo p to any other, nor is any congruent to
zero. Indeed, if it happened that

ra ≡ sa (mod p) 1 ≤ r < s ≤ p − 1

then a could be canceled to give r ≡ s (mod p), which is impossible. Therefore, the
previous set of integers must be congruent modulo p to 1, 2, 3, . . . , p − 1, taken in
some order. Multiplying all these congruences together, we find that

a · 2a · 3a · · · (p − 1)a ≡ 1 · 2 · 3 · · · (p − 1) (mod p)

whence

a p−1(p − 1)! ≡ (p − 1)! (mod p)

Once (p − 1)! is canceled from both sides of the preceding congruence (this is possible
because since p � | (p − 1)!), our line of reasoning culminates in the statement that
a p−1 ≡ 1 (mod p), which is Fermat’s theorem.

This result can be stated in a slightly more general way in which the requirement
that p � | a is dropped.

Corollary. If p is a prime, then a p ≡ a (mod p) for any integer a.

Proof. When p | a, the statement obviously holds; for, in this setting, a p ≡ 0 ≡ a
(mod p). If p � | a, then according to Fermat’s theorem, we have a p−1 ≡ 1 (mod p).
When this congruence is multiplied by a, the conclusion a p ≡ a (mod p) follows.

There is a different proof of the fact that a p ≡ a (mod p), involving induction
on a. If a = 1, the assertion is that 1p ≡ 1 (mod p), which clearly is true, as is the
case a = 0. Assuming that the result holds for a, we must confirm its validity for
a + 1. In light of the binomial theorem,

(a + 1)p = a p +
(

p
1

)
a p−1 + · · · +

(
p
k

)
a p−k + · · · +

(
p

p − 1

)
a + 1

where the coefficient ( p
k ) is given by(

p
k

)
= p!

k!(p − k)!
= p(p − 1) · · · (p − k + 1)

1 · 2 · 3 · · · k

Our argument hinges on the observation that ( p
k ) ≡ 0 (mod p) for 1 ≤ k ≤ p − 1.

To see this, note that

k!

(
p
k

)
= p(p − 1) · · · (p − k + 1) ≡ 0 (mod p)
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by virtue of which p | k! or p | ( p
k ). But p | k! implies that p | j for some j satisfying

1 ≤ j ≤ k ≤ p − 1, an absurdity. Therefore, p | ( p
k ) or, converting to a congruence

statement, (
p
k

)
≡ 0 (mod p)

The point we wish to make is that

(a + 1)p ≡ a p + 1 ≡ a + 1 (mod p)

where the rightmost congruence uses our inductive assumption. Thus, the desired
conclusion holds for a + 1 and, in consequence, for all a ≥ 0. If a happens to be
a negative integer, there is no problem: because a ≡ r (mod p) for some r , where
0 ≤ r ≤ p − 1, we get a p ≡ r p ≡ r ≡ a (mod p).

Fermat’s theorem has many applications and is central to much of what is done
in number theory. In the least, it can be a labor-saving device in certain calculations.
If asked to verify that 538 ≡ 4 (mod 11), for instance, we take the congruence 510 ≡ 1
(mod 11) as our starting point. Knowing this,

538 = 510·3+8 = (510)3(52)4

≡ 13 · 34 ≡ 81 ≡ 4 (mod 11)

as desired.
Another use of Fermat’s theorem is as a tool in testing the primality of a given

integer n. If it could be shown that the congruence

an ≡ a (mod n)

fails to hold for some choice of a, then n is necessarily composite. As an example
of this approach, let us look at n = 117. The computation is kept under control by
selecting a small integer for a, say, a = 2. Because 2117 may be written as

2117 = 27·16+5 = (27)1625

and 27 = 128 ≡ 11 (mod 117), we have

2117 ≡ 1116 · 25 ≡ (121)825 ≡ 48 · 25 ≡ 221 (mod 117)

But 221 = (27)3, which leads to

221 ≡ 113 ≡ 121 · 11 ≡ 4 · 11 ≡ 44 (mod 117)

Combining these congruences, we finally obtain

2117 ≡ 44 �≡ 2 (mod 117)

so that 117 must be composite; actually, 117 = 13 · 9.
It might be worthwhile to give an example illustrating the failure of the converse

of Fermat’s theorem to hold, in other words, to show that if an−1 ≡ 1 (mod n) for
some integer a, then n need not be prime. As a prelude we require a technical lemma.

Lemma. If p and q are distinct primes with a p ≡ a (mod q) and aq ≡ a (mod p),
then a pq ≡ a (mod pq).
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Proof. The last corollary tells us that (aq )p ≡ aq (mod p), whereas aq ≡ a (mod p)
holds by hypothesis. Combining these congruences, we obtain a pq ≡ a (mod p) or, in
different terms, p | a pq − a. In an entirely similar manner, q | a pq − a. Corollary 2 to
Theorem 2.4 now yields pq | a pq − a, which can be recast as a pq ≡ a (mod pq).

Our contention is that 2340 ≡ 1 (mod 341), where 341 = 11 · 31. In working
toward this end, notice that 210 = 1024 = 31 · 33 + 1. Thus,

211 = 2 · 210 ≡ 2 · 1 ≡ 2 (mod 31)

and

231 = 2(210)3 ≡ 2 · 13 ≡ 2 (mod 11)

Exploiting the lemma,

211·31 ≡ 2 (mod 11 · 31)

or 2341 ≡ 2 (mod 341). After canceling a factor of 2, we pass to

2340 ≡ 1 (mod 341)

so that the converse to Fermat’s theorem is false.
The historical interest in numbers of the form 2n − 2 resides in the claim made by

Chinese mathematicians over 25 centuries ago that n is prime if and only if n | 2n − 2
(in point of fact, this criterion is reliable for all integers n ≤ 340). Our example,
where 341 | 2341 − 2, although 341 = 11 · 31, lays the conjecture to rest; this was
discovered in the year 1819. The situation in which n | 2n − 2 occurs often enough
to merit a name, though: a composite integer n is called pseudoprime whenever
n | 2n − 2. It can be shown that there are infinitely many pseudoprimes, the smallest
four being 341, 561, 645, and 1105.

Theorem 5.2 allows us to construct an increasing sequence of pseudoprimes.

Theorem 5.2. If n is an odd pseudoprime, then Mn = 2n − 1 is a larger one.

Proof. Because n is a composite number, we can write n = rs, with 1 < r ≤
s < n. Then, according to Problem 21, Section 2.3, 2r − 1 | 2n − 1, or equivalently
2r − 1 | Mn , making Mn composite. By our hypotheses, 2n ≡ 2 (mod n); hence
2n − 2 = kn for some integer k. It follows that

2Mn−1 = 22n−2 = 2kn

This yields

2Mn−1 − 1 = 2kn − 1

= (2n − 1)(2n(k−1) + 2n(k−2) + · · · + 2n + 1)

= Mn(2n(k−1) + 2n(k−2) + · · · + 2n + 1)

≡ 0 (mod Mn)

We see immediately that 2Mn − 2 ≡ 0 (mod Mn), in light of which Mn is a pseudoprime.
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More generally, a composite integer n for which an ≡ a (mod n) is called a
pseudoprime to the base a. (When a = 2, n is simply said to be a pseudoprime.) For
instance, 91 is the smallest pseudoprime to base 3, whereas 217 is the smallest such
to base 5. It has been proved (1903) that there are infinitely many pseudoprimes to
any given base.

These “prime imposters” are much rarer than are actual primes. Indeed, there are
only 247 pseudoprimes smaller than one million, in comparison with 78498 primes.
The first example of an even pseudoprime, namely, the number

161038 = 2 · 73 · 1103

was found in 1950.
There exist composite numbers n that are pseudoprimes to every base a;

that is, an−1 = 1 (mod n) for all integers a with gcd(a, n) = 1. The least such is
561. These exceptional numbers are called absolute pseudoprimes or Carmichael
numbers, for R. D. Carmichael, who was the first to notice their existence. In
his first paper on the subject, published in 1910, Carmichael indicated four ab-
solute pseudoprimes including the well-known 561 = 3 · 11 · 17. The others are
1105 = 5 · 13 · 17, 2821 = 7 · 13 · 31, and 15841 = 7 · 31 · 73. Two years later he
presented 11 more having three prime factors and discovered one absolute pseudo-
prime with four factors, specifically, 16046641 = 13 · 37 · 73 · 457.

To see that 561 = 3 · 11 · 17 must be an absolute pseudoprime, notice that
gcd(a, 561) = 1 gives

gcd(a, 3) = gcd(a, 11) = gcd(a, 17) = 1

An application of Fermat’s theorem leads to the congruences

a2 ≡ 1 (mod 3) a10 ≡ 1 (mod 11) a16 ≡ 1 (mod 17)

and, in turn, to

a560 ≡ (a2)280 ≡ 1 (mod 3)

a560 ≡ (a10)56 ≡ 1 (mod 11)

a560 ≡ (a16)35 ≡ 1 (mod 17)

These give rise to the single congruence a560 ≡ 1 (mod 561), where gcd(a, 561) = 1.
But then a561 ≡ a (mod 561) for all a, showing 561 to be an absolute pseudoprime.

Any absolute pseudoprime is square-free. This is easy to prove. Suppose
that an ≡ a (mod n) for every integer a, but k2 | n for some k > 1. If we let a = k, then
kn ≡ k (mod n). Because k2 | n, this last congruence holds modulo k2; that is, k ≡
kn ≡ 0 (mod k2), whence k2 | k, which is impossible. Thus, n must be square-free.

Next we present a theorem that furnishes a means for producing absolute
pseudoprimes.

Theorem 5.3. Let n be a composite square-free integer, say, n = p1 p2 · · · pr , where
the pi are distinct primes. If pi − 1 | n − 1 for i = 1, 2, . . . , r , then n is an absolute
pseudoprime.
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Proof. Suppose that a is an integer satisfying gcd(a, n) = 1, so that gcd(a, pi ) = 1
for each i . Then Fermat’s theorem yields pi | a pi −1 − 1. From the divisibility hy-
pothesis pi − 1 | n − 1, we have pi | an−1 − 1, and therefore pi | an − a for all a and
i = 1, 2, . . . , r . As a result of Corollary 2 to Theorem 2.4, we end up with n | an − a,
which makes n an absolute pseudoprime.

Examples of integers that satisfy the conditions of Theorem 5.3 are

1729 = 7 · 13 · 19 6601 = 7 · 23 · 41 10585 = 5 · 29 · 73

It was proven in 1994 that infinitely many absolute pseudoprimes exist, but that they
are fairly rare. There are just 43 of them less than one million, and 105212 less
than 1015.

PROBLEMS 5.2

1. Use Fermat’s theorem to verify that 17 divides 11104 + 1.
2. (a) If gcd(a, 35) = 1, show that a12 ≡ 1 (mod 35).

[Hint: From Fermat’s theorem a6 ≡ 1 (mod 7) and a4 ≡ 1 (mod 5).]
(b) If gcd(a, 42) = 1, show that 168 = 3 · 7 · 8 divides a6 − 1.
(c) If gcd(a, 133) = gcd(b, 133) = 1, show that 133 | a18 − b18.

3. From Fermat’s theorem deduce that, for any integer n ≥ 0, 13 | 1112n+6 + 1.
4. Derive each of the following congruences:

(a) a21 ≡ a (mod 15) for all a.
[Hint: By Fermat’s theorem, a5 ≡ a (mod 5).]

(b) a7 ≡ a (mod 42) for all a.
(c) a13 ≡ a (mod 3 · 7 · 13) for all a.
(d) a9 ≡ a (mod 30) for all a.

5. If gcd(a, 30) = 1, show that 60 divides a4 + 59.
6. (a) Find the units digit of 3100 by the use of Fermat’s theorem.

(b) For any integer a, verify that a5 and a have the same units digit.
7. If 7 � | a, prove that either a3 + 1 or a3 − 1 is divisible by 7.
8. The three most recent appearances of Halley’s comet were in the years 1835, 1910, and

1986; the next occurrence will be in 2061. Prove that

18351910 + 19862061 ≡ 0 (mod 7)

9. (a) Let p be a prime and gcd(a, p) = 1. Use Fermat’s theorem to verify that x ≡ a p−2b
(mod p) is a solution of the linear congruence ax ≡ b (mod p).

(b) By applying part (a), solve the congruences 2x ≡ 1 (mod 31), 6x ≡ 5 (mod 11), and
3x ≡ 17 (mod 29).

10. Assuming that a and b are integers not divisible by the prime p, establish the following:
(a) If a p ≡ bp (mod p), then a ≡ b (mod p).
(b) If a p ≡ bp (mod p), then a p ≡ bp (mod p2).

[Hint: By (a), a = b + pk for some k, so that a p − bp = (b + pk)p − bp; now show
that p2 divides the latter expression.]

11. Employ Fermat’s theorem to prove that, if p is an odd prime, then
(a) 1p−1 + 2p−1 + 3p−1 + · · · + (p − 1)p−1 ≡ −1 (mod p).
(b) 1p + 2p + 3p + · · · + (p − 1)p ≡ 0 (mod p).

[Hint: Recall the identity 1 + 2 + 3 + · · · + (p − 1) = p(p − 1)/2.]
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12. Prove that if p is an odd prime and k is an integer satisfying 1 ≤ k ≤ p − 1, then the
binomial coefficient (

p − 1
k

)
≡ (−1)k (mod p)

13. Assume that p and q are distinct odd primes such that p − 1 | q − 1. If gcd(a, pq) = 1,
show that aq−1 ≡ 1 (mod pq).

14. If p and q are distinct primes, prove that

pq−1 + q p−1 ≡ 1 (mod pq)

15. Establish the statements below:
(a) If the number Mp = 2p − 1 is composite, where p is a prime, then Mp is a pseudo-

prime.
(b) Every composite number Fn = 22n + 1 is a pseudoprime (n = 0, 1, 2, . . .).

[Hint: By Problem 21, Section 2.3, 2n+1| 22n
implies that 22n+1 − 1| 2Fn−1 − 1;

but Fn | 22n+1 − 1.]
16. Confirm that the following integers are absolute pseudoprimes:

(a) 1105 = 5 · 13 · 17.
(b) 2821 = 7 · 13 · 31.
(c) 2465 = 5 · 17 · 29.

17. Show that the smallest pseudoprime 341 is not an absolute pseudoprime by showing that
11341 �≡ 11 (mod 341).
[Hint: 31 � | 11341 − 11.]

18. (a) When n = 2p, where p is an odd prime, prove that an−1 ≡ a (mod n) for any
integer a.

(b) For n = 195 = 3 · 5 · 13, verify that an−2 ≡ a (mod n) for any integer a.
19. Prove that any integer of the form

n = (6k + 1)(12k + 1)(18k + 1)

is an absolute pseudoprime if all three factors are prime; hence, 1729 = 7 · 13 · 19 is an
absolute pseudoprime.

20. Show that 561 | 2561 − 2 and 561 | 3561 − 3. It is an unanswered question whether there
exist infinitely many composite numbers n with the property that n | 2n − 2 and n | 3n − 3.

21. Establish the congruence

22225555 + 55552222 ≡ 0 (mod 7)

[Hint: First evaluate 1111 modulo 7.]

5.3 WILSON’S THEOREM

We now turn to another milestone in the development of number theory. In his
Meditationes Algebraicae of 1770, the English mathematician Edward Waring
(1734–1798) announced several new theorems. Foremost among these is an in-
teresting property of primes reported to him by one of his former students, a certain
John Wilson. The property is the following: If p is a prime number, then p divides
(p − 1)! + 1. Wilson appears to have guessed this on the basis of numerical com-
putations; at any rate, neither he nor Waring knew how to prove it. Confessing his
inability to supply a demonstration, Waring added, “Theorems of this kind will be
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very hard to prove, because of the absence of a notation to express prime numbers.”
(Reading the passage, Gauss uttered his telling comment on “notationes versus no-
tiones,” implying that in questions of this nature it was the notion that really mattered,
not the notation.) Despite Waring’s pessimistic forecast, soon afterward Lagrange
(1771) gave a proof of what in literature is called “Wilson’s theorem” and observed
that the converse also holds. Perhaps it would be more just to name the theorem after
Leibniz, for there is evidence that he was aware of the result almost a century earlier,
but published nothing on the subject.

Now we give a proof of Wilson’s theorem.

Theorem 5.4 Wilson. If p is a prime, then (p − 1)! ≡ −1 (mod p).

Proof. Dismissing the cases p = 2 and p = 3 as being evident, let us take p > 3.
Suppose that a is any one of the p − 1 positive integers

1, 2, 3, . . . , p − 1

and consider the linear congruence ax ≡ 1 (mod p). Then gcd(a, p) = 1. By Theorem
4.7, this congruence admits a unique solution modulo p; hence, there is a unique integer
a′, with 1 ≤ a′ ≤ p − 1, satisfying aa′ ≡ 1 (mod p).

Because p is prime, a = a′ if and only if a = 1 or a = p − 1. Indeed, the con-
gruence a2 ≡ 1 (mod p) is equivalent to (a − 1) · (a + 1) ≡ 0 (mod p). Therefore,
either a − 1 ≡ 0 (mod p), in which case a = 1, or a + 1 ≡ 0 (mod p), in which case
a = p − 1.

If we omit the numbers 1 and p − 1, the effect is to group the remaining integers
2, 3, . . . , p − 2 into pairs a, a′, where a �= a′, such that their product aa′ ≡ 1 (mod p).
When these (p − 3)/2 congruences are multiplied together and the factors rearranged,
we get

2 · 3 · · · (p − 2) ≡ 1 (mod p)

or rather

(p − 2)! ≡ 1 (mod p)

Now multiply by p − 1 to obtain the congruence

(p − 1)! ≡ p − 1 ≡ −1 (mod p)

as was to be proved.

Example 5.1. A concrete example should help to clarify the proof of Wilson’s theorem.
Specifically, let us take p = 13. It is possible to divide the integers 2, 3, . . . , 11 into
(p − 3)/2 = 5 pairs, each product of which is congruent to 1 modulo 13. To write
these congruences out explicitly:

2 · 7 ≡ 1 (mod 13)

3 · 9 ≡ 1 (mod 13)

4 · 10 ≡ 1 (mod 13)

5 · 8 ≡ 1 (mod 13)

6 · 11 ≡ 1 (mod 13)
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Multiplying these congruences gives the result

11! = (2 · 7)(3 · 9)(4 · 10)(5 · 8)(6 · 11) ≡ 1 (mod 13)

and so

12! ≡ 12 ≡ −1 (mod 13)

Thus, (p − 1)! ≡ −1 (mod p), with p = 13.

The converse of Wilson’s theorem is also true. If (n − 1)! ≡ −1 (mod n), then
n must be prime. For, if n is not a prime, then n has a divisor d with 1 < d < n.
Furthermore, because d ≤ n − 1, d occurs as one of the factors in (n − 1)!, whence
d | (n − 1)!. Now we are assuming that n | (n − 1)! + 1, and so d | (n − 1)! + 1, too.
The conclusion is that d | 1, which is nonsense.

Taken together, Wilson’s theorem and its converse provide a necessary and
sufficient condition for determining primality; namely, an integer n > 1 is prime if
and only if (n − 1)! ≡ −1 (mod n). Unfortunately, this test is of more theoretical than
practical interest because as n increases, (n − 1)! rapidly becomes unmanageable in
size.

We would like to close this chapter with an application of Wilson’s theorem
to the study of quadratic congruences. [It is understood that quadratic congruence
means a congruence of the form ax2 + bx + c ≡ 0 (mod n), with a �≡ 0 (mod n).]
This is the content of Theorem 5.5.

Theorem 5.5. The quadratic congruence x2 + 1 ≡ 0 (mod p), where p is an odd
prime, has a solution if and only if p ≡ 1 (mod 4).

Proof. Let a be any solution of x2 + 1 ≡ 0 (mod p), so that a2 ≡ −1 (mod p). Because
p � | a, the outcome of applying Fermat’s theorem is

1 ≡ a p−1 ≡ (a2)(p−1)/2 ≡ (−1)(p−1)/2 (mod p)

The possibility that p = 4k + 3 for some k does not arise. If it did, we would have

(−1)(p−1)/2 = (−1)2k+1 = −1

hence, 1 ≡ −1 (mod p). The net result of this is that p | 2, which is patently false.
Therefore, p must be of the form 4k + 1.

Now for the opposite direction. In the product

(p − 1)! = 1 · 2 · · · p − 1

2
· p + 1

2
· · · (p − 2)(p − 1)

we have the congruences

p − 1 ≡ −1 (mod p)

p − 2 ≡ −2 (mod p)

...
p + 1

2
≡ − p − 1

2
(mod p)
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Rearranging the factors produces

(p − 1)! ≡ 1 · (−1) · 2 · (−2) · · · p − 1

2
·
(

− p − 1

2

)
(mod p)

≡ (−1)(p−1)/2

(
1 · 2 · · · p − 1

2

)2

(mod p)

because there are (p − 1)/2 minus signs involved. It is at this point that Wilson’s
theorem can be brought to bear; for, (p − 1)! ≡ −1 (mod p), whence

−1 ≡ (−1)(p−1)/2

[(
p − 1

2

)
!

]2

(mod p)

If we assume that p is of the form 4k + 1, then (−1)(p−1)/2 = 1, leaving us with the
congruence

−1 ≡
[(

p − 1

2

)
!

]2

(mod p)

The conclusion is that the integer [(p − 1)/2]! satisfies the quadratic congruence x2 + 1
≡ 0 (mod p).

Let us take a look at an actual example, say, the case p = 13, which is a prime
of the form 4k + 1. Here, we have (p − 1)/2 = 6, and it is easy to see that

6! = 720 ≡ 5 (mod 13)

and

52 + 1 = 26 ≡ 0 (mod 13)

Thus, the assertion that [((p − 1)/2)!]2 + 1 ≡ 0 (mod p) is correct for p = 13.
Wilson’s theorem implies that there exists an infinitude of composite numbers

of the form n! + 1. On the other hand, it is an open question whether n! + 1 is prime
for infinitely many values of n. The only values of n in the range 1 ≤ n ≤ 100 for
which n! + 1 is known to be a prime number are n = 1, 2, 3, 11, 27, 37, 41, 73, and
77. Currently, the largest prime of the form n! + 1 is 6380! + 1, discovered in 2000.

PROBLEMS 5.3

1. (a) Find the remainder when 15! is divided by 17.
(b) Find the remainder when 2(26!) is divided by 29.

2. Determine whether 17 is a prime by deciding whether 16! ≡ −1 (mod 17).
3. Arrange the integers 2, 3, 4, . . . , 21 in pairs a and b that satisfy ab ≡ 1 (mod 23).
4. Show that 18! ≡ −1 (mod 437).
5. (a) Prove that an integer n > 1 is prime if and only if (n − 2)! ≡ 1 (mod n).

(b) If n is a composite integer, show that (n − 1)! ≡ 0 (mod n), except when n = 4.
6. Given a prime number p, establish the congruence

(p − 1)! ≡ p − 1 (mod 1 + 2 + 3 + · · · + (p − 1))
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7. If p is a prime, prove that for any integer a,

p | a p + (p − 1)!a and p | (p − 1)!a p + a

[Hint: By Wilson’s theorem, a p + (p − 1)!a ≡ a p − a (mod p).]
8. Find two odd primes p ≤ 13 for which the congruence (p − 1)! ≡ −1 (mod p2) holds.
9. Using Wilson’s theorem, prove that for any odd prime p,

12 · 32 · 52 · · · (p − 2)2 ≡ (−1)(p+1)/2 (mod p)

[Hint: Because k ≡ −(p − k) (mod p), it follows that

2 · 4 · 6 · · · (p − 1) ≡ (−1)(p−1)/21 · 3 · 5 · · · (p − 2) (mod p).]

10. (a) For a prime p of the form 4k + 3, prove that either(
p − 1

2

)
! ≡ 1 (mod p) or

(
p − 1

2

)
! ≡ −1 (mod p)

hence, [(p − 1)/2]! satisfies the quadratic congruence x2 ≡ 1 (mod p).
(b) Use part (a) to show that if p = 4k + 3 is prime, then the product of all the even

integers less than p is congruent modulo p to either 1 or −1.
[Hint: Fermat’s theorem implies that 2(p−1)/2 ≡ ±1 (mod p).]

11. Apply Theorem 5.5 to obtain two solutions to each of the quadratic congruences x2 ≡ −1
(mod 29) and x2 ≡ −1 (mod 37).

12. Show that if p = 4k + 3 is prime and a2 + b2 ≡ 0 (mod p), then a ≡ b ≡ 0 (mod p).
[Hint: If a �≡ 0 (mod p), then there exists an integer c such that ac ≡ 1 (mod p); use this
fact to contradict Theorem 5.5.]

13. Supply any missing details in the following proof of the irrationality of
√

2: Suppose√
2 = a/b, with gcd(a, b) = 1. Then a2 = 2b2, so that a2 + b2 = 3b2. But 3 | (a2 + b2)

implies that 3 | a and 3 | b, a contradiction.
14. Prove that the odd prime divisors of the integer n2 + 1 are of the form 4k + 1.

[Hint: Theorem 5.5.]
15. Verify that 4(29!) + 5! is divisible by 31.
16. For a prime p and 0 ≤ k ≤ p − 1, show that k!(p − k − 1)! ≡ (−1)k+1 (mod p).
17. If p and q are distinct primes, prove that for any integer a,

pq | a pq − a p − aq + a

18. Prove that if p and p + 2 are a pair of twin primes, then

4((p − 1)! + 1) + p ≡ 0 (mod p(p + 2))

5.4 THE FERMAT-KRAITCHIK FACTORIZATION METHOD

In a fragment of a letter, written in all probability to Father Marin Mersenne in 1643,
Fermat described a technique of his for factoring large numbers. This represented
the first real improvement over the classical method of attempting to find a factor
of n by dividing by all primes not exceeding

√
n. Fermat’s factorization scheme has

at its heart the observation that the search for factors of an odd integer n (because
powers of 2 are easily recognizable and may be removed at the outset, there is no
loss in assuming that n is odd) is equivalent to obtaining integral solutions x and y
of the equation

n = x2 − y2
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If n is the difference of two squares, then it is apparent that n can be factored as

n = x2 − y2 = (x + y)(x − y)

Conversely, when n has the factorization n = ab, with a ≥ b ≥ 1, then we may write

n =
(

a + b

2

)2

−
(

a − b

2

)2

Moreover, because n is taken to be an odd integer, a and b are themselves odd; hence
(a + b)/2 and (a − b)/2 will be nonnegative integers.

One begins the search for possible x and y satisfying the equation n = x2 − y2,
or what is the same thing, the equation

x2 − n = y2

by first determining the smallest integer k for which k2 ≥ n. Now look successively
at the numbers

k2 − n, (k + 1)2 − n, (k + 2)2 − n, (k + 3)2 − n, . . .

until a value of m ≥ √
n is found making m2 − n a square. The process cannot go

on indefinitely, because we eventually arrive at(
n + 1

2

)2

− n =
(

n − 1

2

)2

the representation of n corresponding to the trivial factorization n = n · 1. If this
point is reached without a square difference having been discovered earlier, then n
has no factors other than n and 1, in which case it is a prime.

Fermat used the procedure just described to factor

2027651281 = 44021 · 46061

in only 11 steps, as compared with making 4580 divisions by the odd primes up to
44021. This was probably a favorable case devised on purpose to show the chief
virtue of his method: It does not require one to know all the primes less than

√
n to

find factors of n.

Example 5.2. To illustrate the application of Fermat’s method, let us factor the inte-
ger n = 119143. From a table of squares, we find that 3452 < 119143 < 3462; thus
it suffices to consider values of k2 − 119143 for those k that satisfy the inequality
346 ≤ k < (119143 + 1)/2 = 59572. The calculations begin as follows:

3462 − 119143 = 119716 − 119143 = 573

3472 − 119143 = 120409 − 119143 = 1266

3482 − 119143 = 121104 − 119143 = 1961

3492 − 119143 = 121801 − 119143 = 2658

3502 − 119143 = 122500 − 119143 = 3357

3512 − 119143 = 123201 − 119143 = 4058

3522 − 119143 = 123904 − 119143 = 4761 = 692
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This last line exhibits the factorization

119143 = 3522 − 692 = (352 + 69)(352 − 69) = 421 · 283

the two factors themselves being prime. In only seven trials, we have obtained the prime
factorization of the number 119143. Of course, one does not always fare so luckily; it
may take many steps before a difference turns out to be a square.

Fermat’s method is most effective when the two factors of n are of nearly the
same magnitude, for in this case a suitable square will appear quickly. To illustrate,
let us suppose that n = 23449 is to be factored. The smallest square exceeding n is
1542, so that the sequence k2 − n starts with

1542 − 23449 = 23716 − 23449 = 267

1552 − 23449 = 24025 − 23449 = 576 = 242

Hence, factors of 23449 are

23449 = (155 + 24)(155 − 24) = 179 · 131

When examining the differences k2 − n as possible squares, many values can be
immediately excluded by inspection of the final digits. We know, for instance, that
a square must end in one of the six digits 0, 1, 4, 5, 6, 9 (Problem 2(a), Section 4.3).
This allows us to exclude all values in Example 5.2, save for 1266, 1961, and 4761.
By calculating the squares of the integers from 0 to 99 modulo 100, we see further
that, for a square, the last two digits are limited to the following 22 possibilities:

00 21 41 64 89

01 24 44 69 96

04 25 49 76

09 29 56 81

16 36 61 84

The integer 1266 can be eliminated from consideration in this way. Because 61 is
among the last two digits allowable in a square, it is only necessary to look at the
numbers 1961 and 4761; the former is not a square, but 4761 = 692.

There is a generalization of Fermat’s factorization method that has been used
with some success. Here, we look for distinct integers x and y such that x2 − y2 is
a multiple of n rather than n itself; that is,

x2 ≡ y2 (mod n)

Having obtained such integers, d = gcd(x − y, n) (or d = gcd(x + y, n)) can be
calculated by means of the Euclidean Algorithm. Clearly, d is a divisor of n, but is
it a nontrivial divisor? In other words, do we have 1 < d < n?

In practice, n is usually the product of two primes p and q, with p < q, so that
d is equal to 1, p, q, or pq. Now the congruence x2 ≡ y2 (mod n) translates into
pq | (x − y)(x + y). Euclid’s lemma tells us that p and q must divide one of the
factors. If it happened that p | x − y and q | x − y, then pq | x − y, or expressed as
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a congruence x ≡ y (mod n). Also, p | x + y and q | x + y yield x ≡ −y (mod n).
By seeking integers x and y satisfying x2 ≡ y2 (mod n), where x �≡ ±y (mod n),
these two situations are ruled out. The result of all this is that d is either p or q,
giving us a nontrivial divisor of n.

Example 5.3. Suppose we wish to factor the positive integer n = 2189 and happen to
notice that 5792 ≡ 182 (mod 2189). Then we compute

gcd(579 − 18, 2189) = gcd(561, 2189) = 11

using the Euclidean Algorithm:

2189 = 3 · 561 + 506

561 = 1 · 506 + 55

506 = 9 · 55 + 11

55 = 5 · 11

This leads to the prime divisor 11 of 2189. The other factor, namely 199, can be obtained
by observing that

gcd(579 + 18, 2189) = gcd(597, 2189) = 199

The reader might wonder how we ever arrived at a number, such as 579, whose
square modulo 2189 also turns out to be a perfect square. In looking for squares
close to multiples of 2189, it was observed that

812 − 3 · 2189 = −6 and 1552 − 11 · 2189 = −54

which translates into

812 ≡ −2 · 3 (mod 2189) and 1552 ≡ −2 · 33 (mod 2189)

When these congruences are multiplied, they produce

(81 · 155)2 ≡ (2 · 32)2 (mod 2189)

Because the product 81 · 155 = 12555 ≡ −579 (mod 2189), we ended up with the
congruence 5792 ≡ 182 (mod 2189).

The basis of our approach is to find several xi having the property that each x2
i

is, modulo n, the product of small prime powers, and such that their product’s square
is congruent to a perfect square.

When n has more than two prime factors, our factorization algorithm may still
be applied; however, there is no guarantee that a particular solution of the congruence
x2 ≡ y2 (mod n), with x �≡ ±y (mod n), will result in a nontrivial divisor of n. Of
course the more solutions of this congruence that are available, the better the chance
of finding the desired factors of n.

Our next example provides a considerably more efficient variant of this last
factorization method. It was introduced by Maurice Kraitchik in the 1920s and
became the basis of such modern methods as the quadratic sieve algorithm.

Example 5.4. Let n = 12499 be the integer to be factored. The first square just larger
than n is 1122 = 12544. So we begin by considering the sequence of numbers x2 − n
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for x = 112, 113, . . . . As before, our interest is in obtaining a set of values x1,

x2, . . . , xk for which the product (xi − n) · · · (xk − n) is a square, say y2. Then
(x1 · · · xk)2 ≡ y2 (mod n), which might lead to a nontrivial factor of n.

A short search reveals that

1122 − 12499 = 45

1172 − 12499 = 1190

1212 − 12499 = 2142

or, written as congruences,

1122 ≡ 32 · 5 (mod 12499)

1172 ≡ 2 · 5 · 7 · 17 (mod 12499)

1212 ≡ 2 · 32 · 7 · 17 (mod 12499)

Multiplying these together results in the congruence

(112 · 117 · 121)2 ≡ (2 · 32 · 5 · 7 · 17)2 (mod 12499)

that is,

15855842 ≡ 107102 (mod 12499)

But we are unlucky with this square combination. Because

1585584 ≡ 10710 (mod 12499)

only a trivial divisor of 12499 will be found. To be specific,

gcd(1585584 + 10710, 12499) = 1

gcd(1585584 − 10710, 12499) = 12499

After further calculation, we notice that

1132 ≡ 2 · 5 · 33 (mod 12499)

1272 ≡ 2 · 3 · 5 · 112 (mod 12499)

which gives rise to the congruence

(113 · 127)2 ≡ (2 · 32 · 5 · 11)2 (mod 12499)

This reduces modulo 12499 to

18522 ≡ 9902 (mod 12499)

and fortunately 1852 �≡ ± 990 (mod 12499). Calculating

gcd(1852 − 990, 12499) = gcd(862, 12499) = 431

produces the factorization 12499 = 29 · 431.



P1: BINAYA KUMAR DASH/BINAYA KUMAR DASH P2: IML/OVY QC: IML/OVY T1: BINAYA KUMAR DASH

bur83147_ch05_085_102 Burton DQ032A-Elementary-v2.cls November 9, 2009 10:29

102 ELEMENTARY NUMBER THEORY

PROBLEMS 5.4

1. Use Fermat’s method to factor each of the following numbers:
(a) 2279.
(b) 10541.
(c) 340663 [Hint: The smallest square just exceeding 340663 is 5842.]

2. Prove that a perfect square must end in one of the following pairs of digits: 00, 01, 04, 09,
16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96.
[Hint: Because x2 ≡ (50 + x)2 (mod 100) and x2 ≡ (50 − x)2 (mod 100), it suffices to
examine the final digits of x2 for the 26 values x = 0, 1, 2, . . . , 25.]

3. Factor the number 211 − 1 by Fermat’s factorization method.
4. In 1647, Mersenne noted that when a number can be written as a sum of two relatively

prime squares in two distinct ways, it is composite and can be factored as follows: If
n = a2 + b2 = c2 + d2, then

n = (ac + bd)(ac − bd)

(a + d)(a − d)

Use this result to factor the numbers

493 = 182 + 132 = 222 + 32

and

38025 = 1682 + 992 = 1562 + 1172

5. Employ the generalized Fermat method to factor each of the following numbers:
(a) 2911 [Hint: 1382 ≡ 672 (mod 2911).]
(b) 4573 [Hint: 1772 ≡ 922 (mod 4573).]
(c) 6923 [Hint: 2082 ≡ 932 (mod 6923).]

6. Factor 13561 with the help of the congruences

2332 ≡ 32 · 5 (mod 13561) and 12812 ≡ 24 · 5 (mod 13561)

7. (a) Factor the number 4537 by searching for x such that

x2 − k · 4537

is the product of small prime powers.
(b) Use the procedure indicated in part (a) to factor 14429.

[Hint: 1202 − 14429 = −29 and 30032 − 625 · 14429 = −116.]
8. Use Kraitchik’s method to factor the number 20437.
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CHAPTER

6
NUMBER-THEORETIC FUNCTIONS

Mathematicians are like Frenchmen: whatever you say to them they translate
into their own language and forthwith it is something entirely different.

GOETHE

6.1 THE SUM AND NUMBER OF DIVISORS

Certain functions are found to be of special importance in connection with the study
of the divisors of an integer. Any function whose domain of definition is the set of
positive integers is said to be a number-theoretic (or arithmetic) function. Although
the value of a number-theoretic function is not required to be a positive integer or,
for that matter, even an integer, most of the number-theoretic functions that we shall
encounter are integer-valued. Among the easiest to handle, and the most natural, are
the functions τ and σ .

Definition 6.1. Given a positive integer n, let τ (n) denote the number of positive
divisors of n and σ (n) denote the sum of these divisors.

For an example of these notions, consider n = 12. Because 12 has the positive
divisors 1, 2, 3, 4, 6, 12, we find that

τ (12) = 6 and σ (12) = 1 + 2 + 3 + 4 + 6 + 12 = 28

For the first few integers,

τ (1) = 1 τ (2) = 2 τ (3) = 2 τ (4) = 3 τ (5) = 2 τ (6) = 4, . . .

103
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and

σ (1) = 1, σ (2) = 3, σ (3) = 4, σ (4) = 7, σ (5) = 6, σ (6) = 12, . . .

It is not difficult to see that τ (n) = 2 if and only if n is a prime number; also,
σ (n) = n + 1 if and only if n is a prime.

Before studying the functions τ and σ in more detail, we wish to introduce
notation that will clarify a number of situations later. It is customary to interpret the
symbol ∑

d | n

f (d)

to mean, “Sum the values f (d) as d runs over all the positive divisors of the positive
integer n.” For instance, we have∑

d | 20

f (d) = f (1) + f (2) + f (4) + f (5) + f (10) + f (20)

With this understanding, τ and σ may be expressed in the form

τ (n) =
∑
d | n

1 σ (n) =
∑
d | n

d

The notation
∑

d | n 1, in particular, says that we are to add together as many 1’s as
there are positive divisors of n. To illustrate: the integer 10 has the four positive
divisors 1, 2, 5, 10, whence

τ (10) =
∑
d | 10

1 = 1 + 1 + 1 + 1 = 4

and

σ (10) =
∑
d | 10

d = 1 + 2 + 5 + 10 = 18

Our first theorem makes it easy to obtain the positive divisors of a positive
integer n once its prime factorization is known.

Theorem 6.1. If n = pk1
1 pk2

2 · · · pkr
r is the prime factorization of n > 1, then the pos-

itive divisors of n are precisely those integers d of the form

d = pa1
1 pa2

2 · · · par
r

where 0 ≤ ai ≤ ki (i = 1, 2, . . . , r ).

Proof. Note that the divisor d = 1 is obtained when a1 = a2 = · · · = ar = 0, and n
itself occurs when a1 = k1, a2 = k2, . . . , ar = kr . Suppose that d divides n nontriv-
ially; say, n = dd ′, where d > 1, d ′ > 1. Express both d and d ′ as products of (not
necessarily distinct) primes:

d = q1q2 · · · qs d ′ = t1t2 · · · tu

with qi , t j prime. Then

pk1
1 pk2

2 · · · pkr
r = q1 · · · qst1 · · · tu
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are two prime factorizations of the positive integer n. By the uniqueness of the prime
factorization, each prime qi must be one of the p j . Collecting the equal primes into a
single integral power, we get

d = q1q2 · · · qs = pa1
1 pa2

2 · · · par
r

where the possibility that ai = 0 is allowed.
Conversely, every number d = pa1

1 pa2
2 · · · par

r (0 ≤ ai ≤ ki ) turns out to be a di-
visor of n. For we can write

n = pk1
1 pk2

2 · · · pkr
r

= (
pa1

1 pa2
2 · · · par

r

)(
pk1−a1

1 pk2−a2
2 · · · pkr −ar

r

)
= dd ′

with d ′ = pk1−a1
1 pk2−a2

2 · · · pkr −ar
r and ki − ai ≥ 0 for each i . Then d ′ > 0 and d | n.

We put this theorem to work at once.

Theorem 6.2. If n = pk1
1 pk2

2 · · · pkr
r is the prime factorization of n > 1, then

(a) τ (n) = (k1 + 1)(k2 + 1) · · · (kr + 1), and

(b) σ (n) = pk1+1
1 − 1

p1 − 1

pk2+1
2 − 1

p2 − 1
· · · pkr +1

r − 1

pr − 1
.

Proof. According to Theorem 6.1, the positive divisors of n are precisely those integers

d = pa1
1 pa2

2 · · · par
r

where 0 ≤ ai ≤ ki . There are k1 + 1 choices for the exponent a1; k2 + 1 choices for
a2, . . . ; and kr + 1 choices for ar . Hence, there are

(k1 + 1)(k2 + 1) · · · (kr + 1)

possible divisors of n.
To evaluate σ (n), consider the product(

1 + p1 + p2
1 + · · · + pk1

1

)(
1+ p2 + p2

2 + · · · + pk2
2

)
· · · (1 + pr + p2

r + · · · + pkr
r

)
Each positive divisor of n appears once and only once as a term in the expansion of
this product, so that

σ (n) = (
1 + p1 + p2

1 + · · · + pk1
1

) · · · (1 + pr + p2
r + · · · + pkr

r

)
Applying the formula for the sum of a finite geometric series to the i th factor on the
right-hand side, we get

1 + pi + p2
i + · · · + pki

i = pki +1
i − 1

pi − 1

It follows that

σ (n) = pk1+1
1 − 1

p1 − 1

pk2+1
2 − 1

p2 − 1
· · · pkr +1

r − 1

pr − 1
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Corresponding to the
∑

notation for sums, the notation for products may be
defined using

∏
, the Greek capital letter pi. The restriction delimiting the numbers

over which the product is to be made is usually put under the
∏

sign. Examples are
∏

1≤d≤5

f (d) = f (1) f (2) f (3) f (4) f (5)

∏
d | 9

f (d) = f (1) f (3) f (9)

∏
p | 30

p prime

f (p) = f (2) f (3) f (5)

With this convention, the conclusion to Theorem 6.2 takes the compact form: if
n = pk1

1 pk2
2 · · · pkr

r is the prime factorization of n > 1, then

τ (n) =
∏

1≤i≤r

(ki + 1)

and

σ (n) =
∏

1≤i≤r

pki +1
i − 1

pi − 1

Example 6.1. The number 180 = 22 · 32 · 5 has

τ (180) = (2 + 1)(2 + 1)(1 + 1) = 18

positive divisors. These are integers of the form

2a1 · 3a2 · 5a3

where a1 = 0, 1, 2; a2 = 0, 1, 2; and a3 = 0, 1. Specifically, we obtain

1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180

The sum of these integers is

σ (180) = 23 − 1

2 − 1

33 − 1

3 − 1

52 − 1

5 − 1
= 7

1

26

2

24

4
= 7 · 13 · 6 = 546

One of the more interesting properties of the divisor function τ is that the product
of the positive divisors of an integer n > 1 is equal to nτ (n)/2. It is not difficult to
get at this fact: Let d denote an arbitrary positive divisor of n, so that n = dd ′ for
some d ′. As d ranges over all τ (n) positive divisors of n, τ (n) such equations occur.
Multiplying these together, we get

nτ (n) =
∏
d | n

d ·
∏
d ′ | n

d ′
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But as d runs through the divisors of n, so does d ′; hence,
∏

d | n d = ∏
d ′ | n d ′. The

situation is now this:

nτ (n) =
(∏

d | n

d

)2

or equivalently

nτ (n)/2 =
∏
d | n

d

The reader might (or, at any rate, should) have one lingering doubt concerning
this equation. For it is by no means obvious that the left-hand side is always an
integer. If τ (n) is even, there is certainly no problem. When τ (n) is odd, n turns out
to be a perfect square (Problem 7, Section 6.1), say, n = m2; thus nτ (n)/2 = mτ (n),
settling all suspicions.

For a numerical example, the product of the five divisors of 16 (namely, 1, 2, 4,
8, 16) is ∏

d | 16

d = 16τ (16)/2 = 165/2 = 45 = 1024

Multiplicative functions arise naturally in the study of the prime factorization
of an integer. Before presenting the definition, we observe that

τ (2 · 10) = τ (20) = 6 �= 2 · 4 = τ (2) · τ (10)

At the same time,

σ (2 · 10) = σ (20) = 42 �= 3 · 18 = σ (2) · σ (10)

These calculations bring out the nasty fact that, in general, it need not be true that

τ (mn) = τ (m)τ (n) and σ (mn) = σ (m)σ (n)

On the positive side of the ledger, equality always holds provided we stick to rela-
tively prime m and n. This circumstance is what prompts Definition 6.2.

Definition 6.2. A number-theoretic function f is said to be multiplicative if

f (mn) = f (m) f (n)

whenever gcd(m, n) = 1.

For simple illustrations of multiplicative functions, we need only consider the
functions given by f (n) = 1 and g(n) = n for all n ≥ 1. It follows by induction
that if f is multiplicative and n1, n2, . . . , nr are positive integers that are pairwise
relatively prime, then

f (n1n2 · · · nr ) = f (n1) f (n2) · · · f (nr )

Multiplicative functions have one big advantage for us: they are completely
determined once their values at prime powers are known. Indeed, if n > 1 is a given
positive integer, then we can write n = pk1

1 pk2
2 · · · pkr

r in canonical form; because the
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pki
i are relatively prime in pairs, the multiplicative property ensures that

f (n) = f
(

pk1
1

)
f
(

pk2
2

) · · · f
(

pkr
r

)
If f is a multiplicative function that does not vanish identically, then there exists

an integer n such that f (n) �= 0. But

f (n) = f (n · 1) = f (n) f (1)

Being nonzero, f (n) may be canceled from both sides of this equation to give
f (1) = 1. The point to which we wish to call attention is that f (1) = 1 for any
multiplicative function not identically zero.

We now establish that τ and σ have the multiplicative property.

Theorem 6.3. The functions τ and σ are both multiplicative functions.

Proof. Let m and n be relatively prime integers. Because the result is trivially true if
either m or n is equal to 1, we may assume that m > 1 and n > 1. If

m = pk1
1 pk2

2 · · · pkr
r and n = q j1

1 q j2
2 · · · q js

s

are the prime factorizations of m and n, then because gcd(m, n) = 1, no pi can occur
among the q j . It follows that the prime factorization of the product mn is given by

mn = pk1
1 · · · pkr

r q j1
1 · · · q js

s

Appealing to Theorem 6.2, we obtain

τ (mn) = [(k1 + 1) · · · (kr + 1)][( j1 + 1) · · · ( js + 1)]

= τ (m)τ (n)

In a similar fashion, Theorem 6.2 gives

σ (mn) =
[

pk1+1
1 − 1

p1 − 1
· · · pkr +1

r − 1

pr − 1

] [
q j1+1

1 − 1

q1 − 1
· · · q js+1

s − 1

qs − 1

]

= σ (m)σ (n)

Thus, τ and σ are multiplicative functions.

We continue our program by proving a general result on multiplicative functions.
This requires a preparatory lemma.

Lemma. If gcd(m, n) = 1, then the set of positive divisors of mn consists of all
products d1d2, where d1 | m, d2 | n and gcd(d1, d2) = 1; furthermore, these products
are all distinct.

Proof. It is harmless to assume that m > 1 and n > 1; let m = pk1
1 pk2

2 · · · pkr
r and

n = q j1
1 q j2

2 · · · q js
s be their respective prime factorizations. Inasmuch as the primes

p1, . . . , pr , q1, . . . , qs are all distinct, the prime factorization of mn is

mn = pk1
1 · · · pkr

r q j1
1 · · · q js

s

Hence, any positive divisor d of mn will be uniquely representable in the form

d = pa1
1 · · · par

r qb1
1 · · · qbs

s 0 ≤ ai ≤ ki , 0 ≤ bi ≤ ji
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This allows us to write d as d = d1d2, where d1 = pa1
1 · · · par

r divides m and
d2 = qb1

1 · · · qbs
s divides n. Because no pi is equal to any q j , we surely must have

gcd(d1, d2) = 1.

A keystone in much of our subsequent work is Theorem 6.4.

Theorem 6.4. If f is a multiplicative function and F is defined by

F(n) =
∑
d | n

f (d)

then F is also multiplicative.

Proof. Let m and n be relatively prime positive integers. Then

F(mn) =
∑
d | mn

f (d)

=
∑
d1 | m
d2 | n

f (d1d2)

because every divisor d of mn can be uniquely written as a product of a divisor d1 of
m and a divisor d2 of n, where gcd(d1, d2) = 1. By the definition of a multiplicative
function,

f (d1d2) = f (d1) f (d2)

It follows that

F(mn) =
∑
d1 | m
d2 | n

f (d1) f (d2)

=
(∑

d1 | m

f (d1)

) (∑
d2 | n

f (d2)

)

= F(m)F(n)

It might be helpful to take time out and run through the proof of Theorem 6.4
in a concrete case. Letting m = 8 and n = 3, we have

F(8 · 3) =
∑
d | 24

f (d)

= f (1) + f (2) + f (3) + f (4) + f (6) + f (8) + f (12) + f (24)

= f (1 · 1) + f (2 · 1) + f (1 · 3) + f (4 · 1) + f (2 · 3)

+ f (8 · 1) + f (4 · 3) + f (8 · 3)

= f (1) f (1) + f (2) f (1) + f (1) f (3) + f (4) f (1) + f (2) f (3)

+ f (8) f (1) + f (4) f (3) + f (8) f (3)

= [ f (1) + f (2) + f (4) + f (8)][ f (1) + f (3)]

=
∑
d | 8

f (d) ·
∑
d | 3

f (d) = F(8)F(3)
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Theorem 6.4 provides a deceptively short way of drawing the conclusion that
τ and σ are multiplicative.

Corollary. The functions τ and σ are multiplicative functions.

Proof. We have mentioned that the constant function f (n) = 1 is multiplicative, as is
the identity function f (n) = n. Because τ and σ may be represented in the form

τ (n) =
∑
d | n

1 and σ (n) =
∑
d | n

d

the stated result follows immediately from Theorem 6.4.

PROBLEMS 6.1

1. Let m and n be positive integers and p1, p2, . . . , pr be the distinct primes that divide at
least one of m or n. Then m and n may be written in the form

m = pk1
1 pk2

2 · · · pkr
r with ki ≥ 0 for i = 1, 2, . . . , r

n = p j1
1 p j2

2 · · · p jr
r with ji ≥ 0 for i = 1, 2, . . . , r

Prove that

gcd(m, n) = pu1
1 pu2

2 · · · pur
r lcm(m, n) = pv1

1 pv2
2 · · · pvr

r

where ui = min {ki , ji }, the smaller of ki and ji ; and vi = max {ki , ji }, the larger of ki

and ji .
2. Use the result of Problem 1 to calculate gcd(12378, 3054) and lcm(12378, 3054).
3. Deduce from Problem 1 that gcd(m, n) lcm(m, n) = mn for positive integers m and n.
4. In the notation of Problem 1, show that gcd(m, n) = 1 if and only if ki ji = 0 for

i = 1, 2, . . . , r .
5. (a) Verify that τ (n) = τ (n + 1) = τ (n + 2) = τ (n + 3) holds for n = 3655 and 4503.

(b) When n = 14, 206, and 957, show that σ (n) = σ (n + 1).
6. For any integer n ≥ 1, establish the inequality τ (n) ≤ 2

√
n.

[Hint: If d | n, then one of d or n/d is less than or equal to
√

n.]
7. Prove the following.

(a) τ (n) is an odd integer if and only if n is a perfect square.
(b) σ (n) is an odd integer if and only if n is a perfect square or twice a perfect square.

[Hint: If p is an odd prime, then 1 + p + p2 + · · · + pk is odd only when k is even.]
8. Show that

∑
d | n 1/d = σ (n)/n for every positive integer n.

9. If n is a square-free integer, prove that τ (n) = 2r , where r is the number of prime divisors
of n.

10. Establish the assertions below:
(a) If n = pk1

1 pk2
2 · · · pkr

r is the prime factorization of n > 1, then

1 >
n

σ (n)
>

(
1 − 1

p1

) (
1 − 1

p2

)
· · ·

(
1 − 1

pr

)

(b) For any positive integer n,

σ (n!)

n!
≥ 1 + 1

2
+ 1

3
+ · · · + 1

n
[Hint: See Problem 8.]

(c) If n > 1 is a composite number, then σ (n) > n + √
n.

[Hint: Let d | n, where 1 < d < n, so 1 < n/d < n. If d ≤ √
n, then n/d ≥ √

n.]
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11. Given a positive integer k > 1, show that there are infinitely many integers n for which
τ (n) = k, but at most finitely many n with σ (n) = k.
[Hint: Use Problem 10(a).]

12. (a) Find the form of all positive integers n satisfying τ (n) = 10. What is the smallest
positive integer for which this is true?

(b) Show that there are no positive integers n satisfying σ (n) = 10.
[Hint: Note that for n > 1, σ (n) > n.]

13. Prove that there are infinitely many pairs of integers m and n with σ (m2) = σ (n2).
[Hint: Choose k such that gcd(k, 10) = 1 and consider the integers m = 5k, n = 4k.]

14. For k ≥ 2, show each of the following:
(a) n = 2k−1 satisfies the equation σ (n) = 2n − 1.
(b) If 2k − 1 is prime, then n = 2k−1(2k − 1) satisfies the equation σ (n) = 2n.
(c) If 2k − 3 is prime, then n = 2k−1(2k − 3) satisfies σ (n) = 2n + 2.
It is not known if there are any positive integers n for which σ (n) = 2n + 1.

15. If n and n + 2 are a pair of twin primes, establish that σ (n + 2) = σ (n) + 2; this also
holds for n = 434 and 8575.

16. (a) For any integer n > 1, prove that there exist integers n1 and n2 for which
τ (n1) + τ (n2) = n.

(b) Prove that the Goldbach conjecture implies that for each even integer 2n there exist
integers n1 and n2 with σ (n1) + σ (n2) = 2n.

17. For a fixed integer k, show that the function f defined by f (n) = nk is multiplicative.
18. Let f and g be multiplicative functions that are not identically zero and have the property

that f (pk) = g(pk) for each prime p and k ≥ 1. Prove that f = g.
19. Prove that if f and g are multiplicative functions, then so is their product f g and quotient

f/g (whenever the latter function is defined).
20. Let ω(n) denote the number of distinct prime divisors of n > 1, with ω(1) = 0. For

instance, ω(360) = ω(23 · 32 · 5) = 3.
(a) Show that 2ω(n) is a multiplicative function.
(b) For a positive integer n, establish the formula

τ (n2) =
∑
d | n

2ω(d)

21. For any positive integer n, prove that
∑

d | n τ (d)3 = (
∑

d | n τ (d))2.
[Hint: Both sides of the equation in question are multiplicative functions of n, so that it
suffices to consider the case n = pk , where p is a prime.]

22. Given n ≥ 1, let σs(n) denote the sum of the sth powers of the positive divisors of n;
that is,

σs(n) =
∑
d | n

ds

Verify the following:
(a) σ0 = τ and σ1 = σ .
(b) σs is a multiplicative function.

[Hint: The function f , defined by f (n) = ns , is multiplicative.]
(c) If n = pk1

1 pk2
2 · · · pkr

r is the prime factorization of n, then

σs(n) =
(

ps(k1+1)
1 − 1

ps
1 − 1

) (
ps(k2+1)

2 − 1

ps
2 − 1

)
· · ·

(
ps(kr +1)

r − 1

ps
r − 1

)
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23. For any positive integer n, show the following:
(a)

∑
d | n σ (d) = ∑

d | n(n/d)τ (d).
(b)

∑
d | n(n/d)σ (d) = ∑

d | n dτ (d).
[Hint: Because the functions

F(n) =
∑
d | n

σ (d) and G(n) =
∑
d | n

n

d
τ (d)

are both multiplicative, it suffices to prove that F(pk) = G(pk) for any prime p.]

6.2 THE MÖBIUS INVERSION FORMULA

We introduce another naturally defined function on the positive integers, the Möbius
μ-function.

Definition 6.3. For a positive integer n, define μ by the rules

μ(n) =

⎧⎪⎨
⎪⎩

1 if n = 1

0 if p2 | n for some prime p

(−1)r if n = p1 p2 · · · pr , where pi are distinct primes

Put somewhat differently, Definition 6.3 states that μ(n) = 0 if n is not a square-
free integer, whereas μ(n) = (−1)r if n is square-free with r prime factors. For
example: μ(30) = μ(2 · 3 · 5) = (−1)3 = −1. The first few values of μ are

μ(1) = 1 μ(2) = −1 μ(3) = −1 μ(4) = 0 μ(5) = −1 μ(6) = 1, . . .

If p is a prime number, it is clear that μ(p) = −1; in addition, μ(pk) = 0 for k ≥ 2.
As the reader may have guessed already, the Möbius μ-function is multiplicative.

This is the content of Theorem 6.5.

Theorem 6.5. The function μ is a multiplicative function.

Proof. We want to show that μ(mn) = μ(m)μ(n), whenever m and n are rela-
tively prime. If either p2 | m or p2 | n, p a prime, then p2 | mn; hence, μ(mn) = 0 =
μ(m)μ(n), and the formula holds trivially. We therefore may assume that both m and
n are square-free integers. Say, m = p1 p2 · · · pr , n = q1q2 · · · qs , with all the primes
pi and q j being distinct. Then

μ(mn) = μ(p1 · · · pr q1 · · · qs) = (−1)r+s

= (−1)r (−1)s = μ(m)μ(n)

which completes the proof.

Let us see what happens if μ(d) is evaluated for all the positive divisors d of
an integer n and the results are added. In the case where n = 1, the answer is easy;
here, ∑

d | 1

μ(d) = μ(1) = 1
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Suppose that n > 1 and put

F(n) =
∑
d | n

μ(d)

To prepare the ground, we first calculate F(n) for the power of a prime, say, n = pk .
The positive divisors of pk are just the k + 1 integers 1, p, p2, . . . , pk , so that

F(pk) =
∑
d | pk

μ(d) = μ(1) + μ(p) + μ(p2) + · · · + μ(pk)

= μ(1) + μ(p) = 1 + (−1) = 0

Because μ is known to be a multiplicative function, an appeal to Theorem 6.4 is
legitimate; this result guarantees that F also is multiplicative. Thus, if the canonical
factorization of n is n = pk1

1 pk2
2 · · · pkr

r , then F(n) is the product of the values assigned
to F for the prime powers in this representation:

F(n) = F
(

pk1
1

)
F

(
pk2

2

) · · · F
(

pkr
r

) = 0

We record this result as Theorem 6.6.

Theorem 6.6. For each positive integer n ≥ 1,

∑
d | n

μ(d) =
{

1 if n = 1
0 if n > 1

where d runs through the positive divisors of n.

For an illustration of this last theorem, consider n = 10. The positive divisors
of 10 are 1, 2, 5, 10 and the desired sum is∑

d | 10

μ(d) = μ(1) + μ(2) + μ(5) + μ(10)

= 1 + (−1) + (−1) + 1 = 0

The full significance of the Möbius μ-function should become apparent with
the next theorem.

Theorem 6.7 Möbius inversion formula. Let F and f be two number-theoretic
functions related by the formula

F(n) =
∑
d | n

f (d)

Then

f (n) =
∑
d | n

μ(d)F
(n

d

)
=

∑
d | n

μ
(n

d

)
F(d)

Proof. The two sums mentioned in the conclusion of the theorem are seen to be the
same upon replacing the dummy index d by d ′ = n/d; as d ranges over all positive
divisors of n, so does d ′.
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Carrying out the required computation, we get

∑
d | n

μ(d)F
(n

d

)
=

∑
d | n

(
μ(d)

∑
c | (n/d)

f (c)

)

=
∑
d | n

( ∑
c | (n/d)

μ(d) f (c)

) (1)

It is easily verified that d | n and c | (n/d) if and only if c | n and d | (n/c). Because of
this, the last expression in Eq. (1) becomes

∑
d | n

( ∑
c | (n/d)

μ(d) f (c)

)
=

∑
c | n

( ∑
d | (n/c)

f (c)μ(d)

)

=
∑
c | n

(
f (c)

∑
d | (n/c)

μ(d)

) (2)

In compliance with Theorem 6.6, the sum
∑

d | (n/c) μ(d) must vanish except when
n/c = 1 (that is, when n = c), in which case it is equal to 1; the upshot is that the
right-hand side of Eq. (2) simplifies to

∑
c | n

(
f (c)

∑
d | (n/c)

μ(d)

)
=

∑
c=n

f (c) · 1

= f (n)

giving us the stated result.

Let us use n = 10 again to illustrate how the double sum in Eq. (2) is turned
around. In this instance, we find that

∑
d | 10

( ∑
c | (10/d)

μ(d) f (c)

)
= μ(1)[ f (1) + f (2) + f (5) + f (10)]

+ μ(2)[ f (1) + f (5)] + μ(5)[ f (1) + f (2)]

+ μ(10) f (1)

= f (1)[μ(1) + μ(2) + μ(5) + μ(10)]

+ f (2)[μ(1) + μ(5)] + f (5)[μ(1) + μ(2)]

+ f (10)μ(1)

=
∑
c | 10

( ∑
d | (10/c)

f (c)μ(d)

)

To see how the Möbius inversion formula works in a particular case, we remind
the reader that the functions τ and σ may both be described as “sum functions”:

τ (n) =
∑
d | n

1 and σ (n) =
∑
d | n

d
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Theorem 6.7 tells us that these formulas may be inverted to give

1 =
∑
d | n

μ
(n

d

)
τ (d) and n =

∑
d | n

μ
(n

d

)
σ (d)

which are valid for all n ≥ 1.
Theorem 6.4 ensures that if f is a multiplicative function, then so is F(n) =∑

d | n f (d). Turning the situation around, one might ask whether the multiplicative
nature of F forces that of f . Surprisingly enough, this is exactly what happens.

Theorem 6.8. If F is a multiplicative function and

F(n) =
∑
d | n

f (d)

then f is also multiplicative.

Proof. Let m and n be relatively prime positive integers. We recall that any divisor
d of mn can be uniquely written as d = d1d2, where d1 | m, d2 | n, and gcd(d1, d2) = 1.
Thus, using the inversion formula,

f (mn) =
∑
d | mn

μ(d)F
(mn

d

)

=
∑
d1 | m
d2 | n

μ(d1d2)F

(
mn

d1d2

)

=
∑
d1 | m
d2 | n

μ(d1)μ(d2)F

(
m

d1

)
F

(
n

d2

)

=
∑
d1 | m

μ(d1)F

(
m

d1

) ∑
d2 | n

μ(d2)F

(
n

d2

)

= f (m) f (n)

which is the assertion of the theorem. Needless to say, the multiplicative character of
μ and of F is crucial to the previous calculation.

For n ≥ 1, we define the sum

M(n) =
n∑

k=1

μ(k)

Then M(n) is the difference between the number of square-free positive integers
k ≤ n with an even number of prime factors and those with an odd number of prime
factors. For example, M(9) = 2 − 4 = −2. In 1897, Franz Mertens (1840–1927)
published a paper with a 50-page table of values of M(n) for n = 1, 2, . . . , 10000.
On the basis of the tabular evidence, Mertens concluded that the inequality

|M(n)| <
√

n n > 1

is “very probable.” (In the previous example, |M(9)| = 2 <
√

9.) This conclusion
later became known as the Mertens conjecture. A computer search carried out in
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1963 verified the conjecture for all n up to 10 billion. But in 1984, Andrew Odlyzko
and Herman te Riele showed that the Mertens conjecture is false. Their proof, which
involved the use of a computer, was indirect and produced no specific value of n
for which |M(n)| ≥ √

n; all it demonstrated was that such a number n must exist
somewhere. Subsequently, it has been shown that there is a counterexample to the
Mertens conjecture for at least one n ≤ (3.21)1064.

PROBLEMS 6.2

1. (a) For each positive integer n, show that

μ(n)μ(n + 1)μ(n + 2)μ(n + 3) = 0

(b) For any integer n ≥ 3, show that
∑n

k=1 μ(k!) = 1.
2. The Mangoldt function � is defined by

�(n) =
{

log p if n = pk , where p is a prime and k ≥ 1

0 otherwise

Prove that �(n) = ∑
d | n μ(n/d) log d = − ∑

d | n μ(d) log d .
[Hint: First show that

∑
d | n �(d) = log n and then apply the Möbius inversion formula.]

3. Let n = pk1
1 pk2

2 · · · pkr
r be the prime factorization of the integer n > 1. If f is a multiplica-

tive function that is not identically zero, prove that∑
d | n

μ(d) f (d) = (1 − f (p1))(1 − f (p2)) · · · (1 − f (pr ))

[Hint: By Theorem 6.4, the function F defined by F(n) = ∑
d | n μ(d) f (d) is multiplica-

tive; hence, F(n) is the product of the values F(pki
i ).]

4. If the integer n > 1 has the prime factorization n = pk1
1 pk2

2 · · · pkr
r , use Problem 3 to

establish the following:
(a)

∑
d | n μ(d)τ (d) = (−1)r .

(b)
∑

d | n μ(d)σ (d) = (−1)r p1 p2 · · · pr .
(c)

∑
d | n μ(d)/d = (1 − 1/p1)(1 − 1/p2) · · · (1 − 1/pr ).

(d)
∑

d | n dμ(d) = (1 − p1)(1 − p2) · · · (1 − pr ).
5. Let S(n) denote the number of square-free divisors of n. Establish that

S(n) =
∑
d | n

|μ(d)| = 2ω(n)

where ω(n) is the number of distinct prime divisors of n.
[Hint: S is a multiplicative function.]

6. Find formulas for
∑

d | n μ2(d)/τ (d) and
∑

d | n μ2(d)/σ (d) in terms of the prime factor-
ization of n.

7. The Liouville λ-function is defined by λ(1) = 1 and λ(n) = (−1)k1+k2+···+kr , if the prime
factorization of n > 1 is n = pk1

1 pk2
2 · · · pkr

r . For instance,

λ(360) = λ(23 · 32 · 5) = (−1)3+2+1 = (−1)6 = 1

(a) Prove that λ is a multiplicative function.
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(b) Given a positive integer n, verify that

∑
d | n

λ(d) =
{

1 if n = m2 for some integer m

0 otherwise

8. For an integer n ≥ 1, verify the formulas below:
(a)

∑
d | n μ(d)λ(d) = 2ω(n).

(b)
∑

d | n λ(n/d)2ω(d) = 1.

6.3 THE GREATEST INTEGER FUNCTION

The greatest integer or “bracket” function [ ] is especially suitable for treating di-
visibility problems. Although not strictly a number-theoretic function, its study has
a natural place in this chapter.

Definition 6.4. For an arbitrary real number x , we denote by [x] the largest integer
less than or equal to x ; that is, [x] is the unique integer satisfying x − 1 < [x] ≤ x .

By way of illustration, [ ] assumes the particular values

[−3/2] = −2 [
√

2] = 1 [1/3] = 0 [π ] = 3 [−π ] = −4

The important observation to be made here is that the equality [x] = x holds if
and only if x is an integer. Definition 6.4 also makes plain that any real number x
can be written as

x = [x] + θ

for a suitable choice of θ , with 0 ≤ θ < 1.
We now plan to investigate the question of how many times a particular prime

p appears in n!. For instance, if p = 3 and n = 9, then

9! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9

= 27 · 34 · 5 · 7

so that the exact power of 3 that divides 9! is 4. It is desirable to have a formula that
will give this count, without the necessity of always writing n! in canonical form.
This is accomplished by Theorem 6.9.

Theorem 6.9. If n is a positive integer and p a prime, then the exponent of the highest
power of p that divides n! is

∞∑
k=1

[
n

pk

]

where the series is finite, because [n/pk] = 0 for pk > n.

Proof. Among the first n positive integers, those divisible by p are p, 2p, . . . , tp,
where t is the largest integer such that tp ≤ n; in other words, t is the largest integer
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less than or equal to n/p (which is to say t = [n/p]). Thus, there are exactly [n/p]
multiples of p occurring in the product that defines n!, namely,

p, 2p, . . . ,

[
n

p

]
p (1)

The exponent of p in the prime factorization of n! is obtained by adding to the
number of integers in Eq. (1), the number of integers among 1, 2, . . . , n divisible by
p2, and then the number divisible by p3, and so on. Reasoning as in the first paragraph,
the integers between 1 and n that are divisible by p2 are

p2, 2p2, . . . ,

[
n

p2

]
p2 (2)

which are [n/p2] in number. Of these, [n/p3] are again divisible by p:

p3, 2p3, . . . ,

[
n

p3

]
p3 (3)

After a finite number of repetitions of this process, we are led to conclude that the total
number of times p divides n! is

∞∑
k=1

[
n

pk

]

This result can be cast as the following equation, which usually appears under
the name of the Legendre formula:

n! =
∏
p≤n

p
∑∞

k=1[n/pk ]

Example 6.2. We would like to find the number of zeros with which the decimal
representation of 50! terminates. In determining the number of times 10 enters into the
product 50!, it is enough to find the exponents of 2 and 5 in the prime factorization of
50!, and then to select the smaller figure.

By direct calculation we see that

[50/2] + [50/22] + [50/23] + [50/24] + [50/25]

= 25 + 12 + 6 + 3 + 1

= 47

Theorem 6.9 tells us that 247 divides 50!, but 248 does not. Similarly,

[50/5] + [50/52] = 10 + 2 = 12

and so the highest power of 5 dividing 50! is 12. This means that 50! ends with 12
zeros.

We cannot resist using Theorem 6.9 to prove the following fact.



P1: BINAYA KUMAR DASH/BINAYA KUMAR DASH P2: IML/OVY QC: IML/OVY T1: BINAYA KUMAR DASH

bur83147_ch06_103_128 Burton DQ032A-Elementary-v2.cls November 9, 2009 10:41

NUMBER-THEORETIC FUNCTIONS 119

Theorem 6.10. If n and r are positive integers with 1 ≤ r < n, then the binomial
coefficient (

n

r

)
= n!

r !(n − r )!

is also an integer.

Proof. The argument rests on the observation that if a and b are arbitrary real numbers,
then [a + b] ≥ [a] + [b]. In particular, for each prime factor p of r !(n − r )!,[

n

pk

]
≥

[
r

pk

]
+

[
(n − r )

pk

]
k = 1, 2, . . .

Adding these inequalities, we obtain

∑
k≥1

[
n

pk

]
≥

∑
k≥1

[
r

pk

]
+

∑
k≥1

[
(n − r )

pk

]
(1)

The left-hand side of Eq. (1) gives the exponent of the highest power of the prime
p that divides n!, whereas the right-hand side equals the highest power of this prime
contained in r !(n − r )!. Hence, p appears in the numerator of n!/r !(n − r )! at least
as many times as it occurs in the denominator. Because this holds true for every prime
divisor of the denominator, r !(n − r )! must divide n!, making n!/r !(n − r )! an integer.

Corollary. For a positive integer r , the product of any r consecutive positive integers
is divisible by r !.

Proof. The product of r consecutive positive integers, the largest of which is n, is

n(n − 1)(n − 2) · · · (n − r + 1)

Now we have

n(n − 1) · · · (n − r + 1) =
(

n!

r !(n − r )!

)
r !

Because n!/r !(n − r )! is an integer by the theorem, it follows that r ! must divide the
product n(n − 1) · · · (n − r + 1), as asserted.

We pick up a few loose threads. Having introduced the greatest integer function,
let us see what it has to do with the study of number-theoretic functions. Their
relationship is brought out by Theorem 6.11.

Theorem 6.11. Let f and F be number-theoretic functions such that

F(n) =
∑
d | n

f (d)

Then, for any positive integer N ,

N∑
n=1

F(n) =
N∑

k=1

f (k)

[
N

k

]
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Proof. We begin by noting that

N∑
n=1

F(n) =
N∑

n=1

∑
d | n

f (d) (1)

The strategy is to collect terms with equal values of f (d) in this double sum. For a
fixed positive integer k ≤ N , the term f (k) appears in

∑
d | n f (d) if and only if k is

a divisor of n. (Because each integer has itself as a divisor, the right-hand side of Eq.
(1) includes f (k), at least once.) Now, to calculate the number of sums

∑
d | n f (d) in

which f (k) occurs as a term, it is sufficient to find the number of integers among 1,
2, . . . , N , which are divisible by k. There are exactly [N/k] of them:

k, 2k, 3k, . . . ,

[
N

k

]
k

Thus, for each k such that 1 ≤ k ≤ N , f (k) is a term of the sum
∑

d | n f (d) for [N/k]
different positive integers less than or equal to N . Knowing this, we may rewrite the
double sum in Eq. (1) as

N∑
n=1

∑
d | n

f (d) =
N∑

k=1

f (k)

[
N

k

]

and our task is complete.

As an immediate application of Theorem 6.11, we deduce Corollary 1.

Corollary 1. If N is a positive integer, then

N∑
n=1

τ (n) =
N∑

n=1

[
N

n

]

Proof. Noting that τ (n) = ∑
d | n 1, we may write τ for F and take f to be the constant

function f (n) = 1 for all n.

In the same way, the relation σ (n) = ∑
d | n d yields Corollary 2.

Corollary 2. If N is a positive integer, then

N∑
n=1

σ (n) =
N∑

n=1

n

[
N

n

]

These last two corollaries, can perhaps, be clarified with an example.

Example 6.3. Consider the case N = 6. The definition of τ tells us that

6∑
n=1

τ (n) = 14
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From Corollary 1,

6∑
n=1

[
6

n

]
= [6] + [3] + [2] + [3/2] + [6/5] + [1]

= 6 + 3 + 2 + 1 + 1 + 1

= 14

as it should. In the present case, we also have

6∑
n=1

σ (n) = 33

and a simple calculation leads to

6∑
n=1

n

[
6

n

]
= 1[6] + 2[3] + 3[2] + 4[3/2] + 5[6/5] + 6[1]

= 1 · 6 + 2 · 3 + 3 · 2 + 4 · 1 + 5 · 1 + 6 · 1

= 33

PROBLEMS 6.3

1. Given integers a and b > 0, show that there exists a unique integer r with 0 ≤ r < b
satisfying a = [a/b]b + r .

2. Let x and y be real numbers. Prove that the greatest integer function satisfies the following
properties:
(a) [x + n] = [x] + n for any integer n.
(b) [x] + [−x] = 0 or −1, according as x is an integer or not.

[Hint: Write x = [x] + θ , with 0 ≤ θ < 1, so that −x = −[x] − 1 + (1 − θ ).]
(c) [x] + [y] ≤ [x + y] and, when x and y are positive, [x][y] ≤ [xy].
(d) [x/n] = [[x]/n] for any positive integer n.

[Hint: Let x/n = [x/n] + θ , where 0 ≤ θ < 1; then [x] = n[x/n] + [nθ ].]
(e) [nm/k] ≥ n[m/k] for positive integers, n, m, k.
(f) [x] + [y] + [x + y] ≤ [2x] + [2y].

[Hint: Let x = [x] + θ , 0 ≤ θ < 1, and y = [y] + θ ′, 0 ≤ θ ′ < 1. Consider cases in
which neither, one, or both of θ and θ ′ are greater than or equal to 1

2 .]
3. Find the highest power of 5 dividing 1000! and the highest power of 7 dividing 2000!.
4. For an integer n ≥ 0, show that [n/2] − [−n/2] = n.
5. (a) Verify that 1000! terminates in 249 zeros.

(b) For what values of n does n! terminate in 37 zeros?
6. If n ≥ 1 and p is a prime, prove that

(a) (2n)!/(n!)2 is an even integer.
[Hint: Use Theorem 6.10.]

(b) The exponent of the highest power of p that divides (2n)!/(n!)2 is

∞∑
k=1

([
2n

pk

]
− 2

[
n

pk

])

(c) In the prime factorization of (2n)!/(n!)2 the exponent of any prime p such that
n < p < 2n is equal to 1.
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7. Let the positive integer n be written in terms of powers of the prime p so that we have
n = ak pk + · · · + a2 p2 + a1 p + a0, where 0 ≤ ai < p. Show that the exponent of the
highest power of p appearing in the prime factorization of n! is

n − (ak + · · · + a2 + a1 + a0)

p − 1

8. (a) Using Problem 7, show that the exponent of highest power of p dividing (pk − 1)!
is [pk − (p − 1)k − 1]/(p − 1).
[Hint: Recall the identity pk − 1 = (p − 1)(pk−1 + · · · + p2 + p + 1).]

(b) Determine the highest power of 3 dividing 80! and the highest power of 7 dividing
2400!.
[Hint: 2400 = 74 − 1.]

9. Find an integer n ≥ 1 such that the highest power of 5 contained in n! is 100.
[Hint: Because the sum of coefficients of the powers of 5 needed to express n in the base
5 is at least 1, begin by considering the equation (n − 1)/4 = 100.]

10. Given a positive integer N , show the following:
(a)

∑N
n=1 μ(n)[N/n] = 1.

(b) | ∑N
n=1 μ(n)/n| ≤ 1.

11. Illustrate Problem 10 in the case where N = 6.
12. Verify that the formula

N∑
n=1

λ(n)

[
N

n

]
= [√

N
]

holds for any positive integer N .
[Hint: Apply Theorem 6.11 to the multiplicative function F(n) = ∑

d | n λ(d), noting that
there are [

√
n] perfect squares not exceeding n.]

13. If N is a positive integer, establish the following:
(a) N = ∑2N

n=1 τ (n) − ∑N
n=1[2N/n].

(b) τ (N ) = ∑N
n=1([N/n] − [(N − 1)/n]).

6.4 AN APPLICATION TO THE CALENDAR

Our familiar calendar, the Gregorian calendar, goes back as far as the second half
of the 16th century. The earlier Julian calendar, introduced by Julius Caesar, was
based on a year of 365 1

4 days, with a leap year every fourth year. This was not a
precise enough measure, because the length of a solar year—the time required for
the earth to complete an orbit about the sun—is apparently 365.2422 days. The small
error meant that the Julian calendar receded a day from its astronomical norm every
128 years.

By the 16th century, the accumulating inaccuracy caused the vernal equinox
(the first day of Spring) to fall on March 11 instead of its proper day, March 21.
The calendar’s inaccuracy naturally persisted throughout the year, but at this season
it meant that the Easter festival was celebrated at the wrong astronomical time.
Pope Gregory XIII rectified the discrepancy in a new calendar, imposed on the
predominantly Catholic countries of Europe. He decreed that 10 days were to be
omitted from the year 1582, by having October 15 of that year immediately follow
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October 4. At the same time, the Jesuit mathematician Christopher Clavius amended
the scheme for leap years: these would be years divisible by 4, except for those
marking centuries. Century years would be leap years only if they were divisible by
400. (For example, the century years 1600 and 2000 are leap years, but 1700, 1800,
1900, and 2100 are not.)

Because the edict came from Rome, Protestant England and her possessions—
including the American colonies—resisted. They did not officially adopt the Gre-
gorian calendar until 1752. By then it was necessary to drop 11 days in September
from the Old Style, or Julian, calendar. So it happened that George Washington, who
was born on February 11, 1732, celebrated his birthday as an adult on February 22.
Other nations gradually adopted the reformed calendar: Russia in 1918, and China
as late as 1949.

Our goal in the present section is to determine the day of the week for a given
date after the year 1600 in the Gregorian calendar. Because the leap year day is added
at the end of February, let us adopt the convenient fiction that each year ends at the
end of February. According to this plan, in the Gregorian year Y March and April
are counted as the first and second months. January and February of the Gregorian
year Y + 1 are, for convenience, counted as the eleventh and twelfth months of the
year Y .

Another convenience is to designate the days of the week, Sunday through
Saturday, by the numbers 0, 1, . . . , 6:

Sun Mon Tue Wed Thu Fri Sat
0 1 2 3 4 5 6

The number of days in a common year is 365 ≡ 1 (mod 7), whereas in leap
years there are 366 ≡ 2 (mod 7) days. Because February 28 is the 365th day of the
year, and 365 ≡ 1 (mod 7), February 28 always falls on the same weekday as the
previous March 1. Thus if a particular March 1 immediately follows February 28,
its weekday number will be one more, modulo 7, than the weekday number of the
previous March 1. But if it follows a leap year day, February 29, its weekday number
will be increased by two.

For instance, if D1600 is the weekday number for March 1, 1600, then March 1
in the years 1601, 1602, and 1603 has numbers congruent modulo 7 to D1600 + 1,
D1600 + 2, and D1600 + 3, respectively; but the number corresponding to March 1,
1604 is D1600 + 5 (mod 7).

We can summarize this: the weekday number DY for March 1 of any year
Y > 1600 will satisfy the congruence

DY ≡ D1600 + (Y − 1600) + L (mod 7) (1)

where L is the number of leap year days between March 1, 1600, and March 1 of
the year Y .

Let us first find L , the number of leap year days between 1600 and the year Y .
To do this, we count the number of these years that are divisible by 4, deduct the
number of century years, and then add back the number of century years divisible by
400. According to Problem 2(a) of Section 6.3, [x − a] = [x] − a whenever a is an
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integer. Hence the number of years n in the interval 1600 < n ≤ Y that are divisible
by 4 is given by [

Y − 1600

4

]
=

[
Y

4
− 400

]
=

[
Y

4

]
− 400

Likewise, the number of elapsed century years is[
Y − 1600

100

]
=

[
Y

100
− 16

]
=

[
Y

100

]
− 16

whereas among those there are[
Y − 1600

400

]
=

[
Y

400
− 4

]
=

[
Y

400

]
− 4

century years that are divisible by 400. Taken together, these statements yield

L =
([

Y

4

]
− 400

)
−

([
Y

100

]
− 16

)
+

([
Y

400

]
− 4

)

=
[

Y

4

]
−

[
Y

100

]
+

[
Y

400

]
− 388

Let us obtain, for a typical example, the number of leap years between 1600 and
1995. We compute:

L = [1995/4] − [1995/100] + [1995/400] − 388

= 498 − 19 + 4 − 388 = 95

Together with congruence (1), this allows us to find a value for D1600. Days
and dates of recent years can still be recalled; we can easily look up the weekday
(Wednesday) for March 1, 1995. That is, D1995 = 3. Then from (1),

3 ≡ D1600 + (1995 − 1600) + 95 ≡ D1600 (mod 7)

and so March 1, 1600, also occurred on a Wednesday. The congruence giving the
day of the week for March 1 in any year Y may now be reformulated as

DY ≡ 3 + (Y − 1600) + L (mod 7) (2)

An alternate formula for L comes from writing the year Y as

Y = 100c + y 0 ≤ y < 100

where c denotes the number of centuries and y the year number within the century.
Upon substitution, the previous expression for L becomes

L =
[
25c + y

4

]
−

[
c + y

100

]
+

[c

4
+ y

400

]
− 388

= 24c +
[ y

4

]
+

[c

4

]
− 388
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(Notice that [y/100] = 0 and y/400 < 1
4 .) Then the congruence for DY appears as

DY ≡ 3 + (100c + y − 1600) + 24c +
[ y

4

]
+

[c

4

]
− 388 (mod 7)

which reduces to

DY ≡ 3 − 2c + y +
[c

4

]
+

[ y

4

]
(mod 7) (3)

Example 6.4 We can use the latest congruence to calculate the day of the week on
which March 1, 1990, fell. For this year, c = 19 and y = 90 so that (3) gives

D1990 ≡ 3 − 38 + 90 + [19/4] + [90/4]

≡ 55 + 4 + 22 ≡ 4 (mod 7)

March 1 was on a Thursday in 1990.

We move on to determining the day of the week on which the first of each month
of the year would fall. Because 30 ≡ 2 (mod 7), a 30-day month advances by two
the weekday on which the next month begins. A 31-day month increases it by 3. So,
for example, the number of June 1 will always be 3 + 2 + 3 ≡ 1 (mod 7) greater
than that of the preceding March 1 because March, April, and May are months of
31, 30, and 31 days, respectively. The table below gives the value that must be added
to the day-number of March 1 to arrive at the number of the first day of each month
in any year Y .

March 0 September 2
April 3 October 4
May 5 November 0
June 1 December 2
July 3 January 5
August 6 February 1

For m = 1, 2, . . . , 12, the expression

[(2.6)m − 0.2] − 2 (mod 7)

produces the same monthly increases as indicated by the table. Thus the number of
the first day of the mth month of the year Y is given by

DY + [(2.6)m − 0.2] − 2 (mod 7)

Taking December 1, 1990, as an example, we have

D1990 + [(2.6)10 − 0.2] − 2 ≡ 4 + 25 − 2 ≡ 6 (mod 7)

that is, the first of December in 1990 fell on a Saturday.
Finally, the number w of day d, month m, year Y = 100c + y is determined

from congruence

w ≡ (d − 1) + DY + [(2.6)m − 0.2] − 2 (mod 7)
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We can use Eq. (3) to recast this:

w ≡ d + [(2.6)m − 0.2] − 2c + y +
[c

4

]
+

[ y

4

]
(mod 7) (4)

We summarize the results of this section in the following theorem.

Theorem 6.12. The date with month m, day d , year Y = 100c + y where c ≥ 16 and
0 ≤ y < 100, has weekday number

w ≡ d + [(2.6)m − 0.2] − 2c + y +
[ c

4

]
+

[ y

4

]
(mod 7)

provided that March is taken as the first month of the year and January and February
are assumed to be the eleventh and twelfth months of the previous year.

Let us give an example using the calendar formula.

Example 6.5. On what day of the week will January 14, 2020, occur?
In our convention, January of 2020 is treated as the eleventh month of the year

2019. The weekday number corresponding to its fourteenth day is computed as

w ≡ 14 + [(2.6)11 − 0.2] − 40 + 19 + [20/4] + [19/4]

≡ 14 + 28 − 40 + 19 + 5 + 4 ≡ 2 (mod 7)

We conclude that January 14, 2020, will take place on a Tuesday.
An interesting question to ask about the calendar is whether every year contains a

Friday the thirteenth. Phrased differently, does the congruence

5 ≡ 13 + [(2.6)m − 0.2] − 2c + y +
[ c

4

]
+

[ y

4

]
(mod 7)

hold for each year Y = 100c + y? Notice that the expression [(2.6)m − 0.2] assumes,
modulo 7, each of the values 0, 1, . . . , 6 as m varies from 3 to 9—values corresponding
to the months May through November. Hence there will always be a month for which
the indicated congruence is satisfied: in fact, there will always be a Friday the thirteenth
during these seven months of any year. For the year 2022, as an example, the Friday
the thirteenth congruence reduces to

0 ≡ [(2.6)m − 0.2] (mod 7)

which holds when m = 3. In 2022, there is a Friday the thirteenth in May.

PROBLEMS 6.4

1. Find the number n of leap years such that 1600 < n < Y , when
(a) Y = 1825.
(b) Y = 1950.
(c) Y = 2075.

2. Determine the day of the week on which you were born.
3. Find the day of the week for the important dates below:

(a) November 19, 1863 (Lincoln’s Gettysburg Address).
(b) April 18, 1906 (San Francisco earthquake).
(c) November 11, 1918 (Great War ends).
(d) October 24, 1929 (Black Day on the New York stock market).
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(e) June 6, 1944 (Allies land in Normandy).
(f) February 15, 1898 (Battleship Maine blown up).

4. Show that days with the identical calendar date in the years 1999 and 1915 fell on the
same day of the week.
[Hint: If W1 and W2 are the weekday numbers for the same date in 1999 and 1915,
respectively, verify that W1 − W2 ≡ 0 (mod 7).]

5. For the year 2010, determine the following:
(a) the calendar dates on which Mondays will occur in March.
(b) the months in which the thirteenth will fall on a Friday.

6. Find the years in the decade 2000 to 2009 when November 29 is on a Sunday.
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CHAPTER

7
EULER’S GENERALIZATION OF

FERMAT’S THEOREM

Euler calculated without apparent effort, just as men breathe, as
eagles sustain themselves in the air.

ARAGO

7.1 LEONHARD EULER

The importance of Fermat’s work resides not so much in any contribution to the
mathematics of his own day, but rather in its animating effect on later generations
of mathematicians. Perhaps the greatest disappointment of Fermat’s career was his
inability to interest others in his new number theory. A century was to pass before a
first-class mathematician, Leonhard Euler (1707–1783), either understood or appre-
ciated its significance. Many of the theorems announced without proof by Fermat
yielded to Euler’s skill, and it is likely that the arguments devised by Euler were not
substantially different from those that Fermat said he possessed.

The key figure in 18th century mathematics, Euler was the son of a Lutheran
pastor who lived in the vicinity of Basel, Switzerland. Euler’s father earnestly wished
him to enter the ministry and sent his son, at the age of 13, to the University of Basel to
study theology. There the young Euler met Johann Bernoulli—then one of Europe’s
leading mathematicians—and befriended Bernoulli’s two sons, Nicolaus and Daniel.
Within a short time, Euler broke off the theological studies that had been selected for
him to address himself exclusively to mathematics. He received his master’s degree
in 1723, and in 1727 at the age of 19, he won a prize from the Paris Academy of
Sciences for a treatise on the most efficient arrangement of ship masts.

129
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Leonhard Euler
(1707–1783)

(Dover Publications, Inc.)

Where the 17th century had been an age of great amateur mathematicians, the
18th century was almost exclusively an era of professionals—university professors
and members of scientific academies. Many of the reigning monarchs delighted in
regarding themselves as patrons of learning, and the academies served as the in-
tellectual crown jewels of the royal courts. Although the motives of these rulers
may not have been entirely philanthropic, the fact remains that the learned societies
constituted important agencies for the promotion of science. They provided salaries
for distinguished scholars, published journals of research papers on a regular ba-
sis, and offered monetary prizes for scientific discoveries. Euler was at different
times associated with two of the newly formed academies, the Imperial Academy at
St. Petersburg (1727–1741; 1766–1783) and the Royal Academy in Berlin (1741–
1766). In 1725, Peter the Great founded the Academy of St. Petersburg and at-
tracted a number of leading mathematicians to Russia, including Nicolaus and Daniel
Bernoulli. On their recommendation, an appointment was secured for Euler. Because
of his youth, he had recently been denied a professorship in physics at the Univer-
sity of Basel and was only too ready to accept the invitation of the Academy. In
St. Petersburg, he soon came into contact with the versatile scholar Christian
Goldbach (of the famous conjecture), a man who subsequently rose from professor
of mathematics to Russian Minister of Foreign Affairs. Given his interests, it seems
likely that Goldbach was the one who first drew Euler’s attention to the work of
Fermat on the theory of numbers.

Euler eventually tired of the political repression in Russia and accepted the call
of Frederick the Great to become a member of the Berlin Academy. The story is told
that, during a reception at Court, he was kindly received by the Queen Mother who
inquired why so distinguished a scholar should be so timid and reticent; he replied,
“Madame, it is because I have just come from a country where, when one speaks,
one is hanged.” However, flattered by the warmth of the Russian feeling toward him
and unendurably offended by the contrasting coolness of Frederick and his court,
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Euler returned to St. Petersburg in 1766 to spend his remaining days. Within two or
three years of his return, Euler became totally blind.

However, Euler did not permit blindness to retard his scientific work; aided by
a phenomenal memory, his writings grew to such enormous proportions as to be
virtually unmanageable. Without a doubt, Euler was the most prolific writer in the
entire history of mathematics. He wrote or dictated over 700 books and papers in his
lifetime and left so much unpublished material that the St. Petersburg Academy did
not finish printing all his manuscripts until 47 years after his death. The publication
of Euler’s collected works was begun by the Swiss Society of Natural Sciences in
1911: it is estimated that more than 75 large volumes will ultimately be required for
the completion of this monumental project. The best testament to the quality of these
papers may be the fact that on 12 occasions they won the coveted biennial prize of
the French Academy in Paris.

During his stay in Berlin, Euler acquired the habit of writing memoir after
memoir, placing each when finished at the top of a pile of manuscripts. Whenever
material was needed to fill the Academy’s journal, the printers helped themselves
to a few papers from the top of the stack. As the height of the pile increased more
rapidly than the demands made upon it, memoirs at the bottom tended to remain in
place a long time. This explains how it happened that various papers of Euler were
published, when extensions and improvements of the material contained in them had
previously appeared in print under his name. We might also add that the manner in
which Euler made his work public contrasts sharply with the secrecy customary in
Fermat’s time.

7.2 EULER’S PHI-FUNCTION

This chapter deals with that part of the theory arising out of the result known as Euler’s
Generalization of Fermat’s Theorem. In a nutshell, Euler extended Fermat’s theorem,
which concerns congruences with prime moduli, to arbitrary moduli. While doing so,
he introduced an important number-theoretic function, described in Definition 7.1.

Definition 7.1. For n ≥ 1, let φ(n) denote the number of positive integers not exceeding
n that are relatively prime to n.

As an illustration of the definition, we find that φ(30) = 8; for, among the
positive integers that do not exceed 30, there are eight that are relatively prime to 30;
specifically,

1, 7, 11, 13, 17, 19, 23, 29

Similarly, for the first few positive integers, the reader may check that

φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(5) = 4,

φ(6) = 2, φ(7) = 6, . . .

Notice that φ(1) = 1, because gcd(1, 1) = 1. In the event n > 1, then
gcd(n, n) = n �= 1, so that φ(n) can be characterized as the number of integers
less than n and relatively prime to it. The function φ is usually called the Euler
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phi-function (sometimes, the indicator or totient) after its originator; the functional
notation φ(n), however, is credited to Gauss.

If n is a prime number, then every integer less than n is relatively prime to
it; whence, φ(n) = n − 1. On the other hand, if n > 1 is composite, then n has a
divisor d such that 1 < d < n. It follows that there are at least two integers among
1, 2, 3, . . . , n that are not relatively prime to n, namely, d and n itself. As a result,
φ(n) ≤ n − 2. This proves that for n > 1,

φ(n) = n − 1 if and only if n is prime

The first item on the agenda is to derive a formula that will allow us to calculate
the value of φ(n) directly from the prime-power factorization of n. A large step in
this direction stems from Theorem 7.1.

Theorem 7.1. If p is a prime and k > 0, then

φ(pk) = pk − pk−1 = pk

(
1 − 1

p

)

Proof. Clearly, gcd(n, pk) = 1 if and only if p � | n. There are pk−1 integers between
1 and pk divisible by p, namely,

p, 2p, 3p, . . . , (pk−1)p

Thus, the set {1, 2, . . . , pk} contains exactly pk − pk−1 integers that are relatively
prime to pk , and so by the definition of the phi-function, φ(pk) = pk − pk−1.

For an example, we have

φ(9) = φ(32) = 32 − 3 = 6

the six integers less than and relatively prime to 9 being 1, 2, 4, 5, 7, 8. To give a
second illustration, there are 8 integers that are less than 16 and relatively prime to
it; they are 1, 3, 5, 7, 9, 11, 13, 15. Theorem 7.1 yields the same count:

φ(16) = φ(24) = 24 − 23 = 16 − 8 = 8

We now know how to evaluate the phi-function for prime powers, and our aim
is to obtain a formula for φ(n) based on the factorization of n as a product of primes.
The missing link in the chain is obvious: show that φ is a multiplicative function.
We pave the way with an easy lemma.

Lemma. Given integers a, b, c, gcd(a, bc) = 1 if and only if gcd(a, b) = 1 and
gcd(a, c) = 1.

Proof. First suppose that gcd(a, bc) = 1, and put d = gcd(a, b). Then d | a and d | b,
whence d | a and d | bc. This implies that gcd(a, bc) ≥ d, which forces d = 1. Similar
reasoning gives rise to the statement gcd(a, c) = 1.

For the other direction, take gcd(a, b) = 1 = gcd(a, c) and assume that
gcd(a, bc) = d1 > 1. Then d1 must have a prime divisor p. Because d1 | bc, it follows



P1: BINAYA KUMAR DASH/BINAYA KUMAR DASH P2: IML/OVY QC: IML/OVY T1: BINAYA KUMAR DASH

bur83147_ch07_129_146 Burton DQ032A-Elementary-v2.cls November 9, 2009 11:1

EULER’S GENERALIZATION OF FERMAT’S THEOREM 133

that p | bc; in consequence, p | b or p | c. If p | b, then (by virtue of the fact that p | a)
we have gcd(a, b) ≥ p, a contradiction. In the same way, the condition p | c leads
to the equally false conclusion that gcd(a, c) ≥ p. Thus, d1 = 1 and the lemma is
proven.

Theorem 7.2. The function φ is a multiplicative function.

Proof. It is required to show that φ(mn) = φ(m)φ(n), wherever m and n have no
common factor. Because φ(1) = 1, the result obviously holds if either m or n equals
1. Thus, we may assume that m > 1 and n > 1. Arrange the integers from 1 to mn in
m columns of n integers each, as follows:

1 2 · · · r · · · m
m + 1 m + 2 m + r 2m

2m + 1 2m + 2 2m + r 3m
...

...
...

...
(n − 1)m + 1 (n − 1)m + 2 (n − 1)m + r nm

We know that φ(mn) is equal to the number of entries in this array that are relatively
prime to mn; by virtue of the lemma, this is the same as the number of integers that
are relatively prime to both m and n.

Before embarking on the details, it is worth commenting on the tactics to be
adopted: because gcd(qm + r, m) = gcd(r, m), the numbers in the r th column are
relatively prime to m if and only if r itself is relatively prime to m. Therefore, only
φ(m) columns contain integers relatively prime to m, and every entry in the column
will be relatively prime to m. The problem is one of showing that in each of these
φ(m) columns there are exactly φ(n) integers that are relatively prime to n; for then
altogether there would be φ(m)φ(n) numbers in the table that are relatively prime to
both m and n.

Now the entries in the r th column (where it is assumed that gcd(r, m) = 1) are

r, m + r, 2m + r, . . . , (n − 1)m + r

There are n integers in this sequence and no two are congruent modulo n. Indeed, if

km + r ≡ jm + r (mod n)

with 0 ≤ k < j < n, it would follow that km ≡ jm (mod n). Because gcd(m, n) = 1,
we could cancel m from both sides of this congruence to arrive at the contradiction
that k ≡ j (mod n). Thus, the numbers in the r th column are congruent modulo n to
0, 1, 2, . . . , n − 1, in some order. But if s ≡ t (mod n), then gcd(s, n) = 1 if and only
if gcd(t, n) = 1. The implication is that the r th column contains as many integers that
are relatively prime to n as does the set {0, 1, 2, . . . , n − 1}, namely, φ(n) integers.
Therefore, the total number of entries in the array that are relatively prime to both m
and n is φ(m)φ(n). This completes the proof of the theorem.

With these preliminaries in hand, we now can prove Theorem 7.3.
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Theorem 7.3. If the integer n > 1 has the prime factorization n = pk1
1 pk2

2 · · · pkr
r , then

φ(n) =
(

pk1
1 − pk1−1

1

) (
pk2

2 − pk2−1
2

)
· · · (pkr

r − pkr −1
r

)

= n

(
1 − 1

p1

) (
1 − 1

p2

)
· · ·

(
1 − 1

pr

)

Proof. We intend to use induction on r , the number of distinct prime factors of n. By
Theorem 7.1, the result is true for r = 1. Suppose that it holds for r = i . Because

gcd
(

pk1
1 pk2

2 · · · pki
i , pki+1

i+1

)
= 1

the definition of multiplicative function gives

φ
((

pk1
1 · · · pki

i

)
pki+1

i+1

)
= φ

(
pk1

1 · · · pki
i

)
φ

(
pki+1

i+1

)

= φ
(

pk1
1 · · · pki

i

) (
pki+1

i+1 − pki+1−1
i+1

)
Invoking the induction assumption, the first factor on the right-hand side becomes

φ
(

pk1
1 pk2

2 · · · pki
i

)
=

(
pk1

1 − pk1−1
1

) (
pk2

2 − pk2−1
2

)
· · ·

(
pki

i − pki −1
i

)

and this serves to complete the induction step and with it the proof.

Example 7.1. Let us calculate the value φ(360), for instance. The prime-power de-
composition of 360 is 23 · 32 · 5, and Theorem 7.3 tells us that

φ(360) = 360

(
1 − 1

2

) (
1 − 1

3

) (
1 − 1

5

)

= 360 · 1

2
· 2

3
· 4

5
= 96

The sharp-eyed reader will have noticed that, save for φ(1) and φ(2), the values of
φ(n) in our examples are always even. This is no accident, as the next theorem shows.

Theorem 7.4. For n > 2, φ(n) is an even integer.

Proof. First, assume that n is a power of 2, let us say that n = 2k , with k ≥ 2. By
Theorem 7.3,

φ(n) = φ(2k) = 2k

(
1 − 1

2

)
= 2k−1

an even integer. If n does not happen to be a power of 2, then it is divisible by an
odd prime p; we therefore may write n as n = pkm, where k ≥ 1 and gcd(pk, m) = 1.
Exploiting the multiplicative nature of the phi-function, we obtain

φ(n) = φ(pk)φ(m) = pk−1(p − 1)φ(m)

which again is even because 2 | p − 1.

We can establish Euclid’s theorem on the infinitude of primes in the following
new way. As before, assume that there are only a finite number of primes. Call them
p1, p2, . . . , pr and consider the integer n = p1 p2 · · · pr . We argue that if 1 < a ≤ n,
then gcd(a, n) �= 1. For, the Fundamental Theorem of Arithmetic tells us that a has
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a prime divisor q. Because p1, p2, . . . , pr are the only primes, q must be one of
these pi , whence q | n; in other words, gcd(a, n) ≥ q. The implication of all this is
that φ(n) = 1, which clearly is impossible by Theorem 7.4.

PROBLEMS 7.2

1. Calculate φ(1001), φ(5040), and φ(36,000).
2. Verify that the equality φ(n) = φ(n + 1) = φ(n + 2) holds when n = 5186.
3. Show that the integers m = 3k · 568 and n = 3k · 638, where k ≥ 0, satisfy

simultaneously

τ (m) = τ (n), σ (m) = σ (n), and φ(m) = φ(n)

4. Establish each of the assertions below:
(a) If n is an odd integer, then φ(2n) = φ(n).
(b) If n is an even integer, then φ(2n) = 2φ(n).
(c) φ(3n) = 3φ(n) if and only if 3 | n.
(d) φ(3n) = 2φ(n) if and only if 3 � | n.
(e) φ(n) = n/2 if and only if n = 2k for some k ≥ 1.

[Hint: Write n = 2k N , where N is odd, and use the condition φ(n) = n/2 to show
that N = 1.]

5. Prove that the equation φ(n) = φ(n + 2) is satisfied by n = 2(2p − 1) whenever p and
2p − 1 are both odd primes.

6. Show that there are infinitely many integers n for which φ(n) is a perfect square.
[Hint: Consider the integers n = 22k+1 for k = 1, 2, . . . .]

7. Verify the following:
(a) For any positive integer n, 1

2

√
n ≤ φ(n) ≤ n.

[Hint: Write n = 2k0 pk1
1 · · · pkr

r , soφ(n) = 2k0−1 pk1−1
1 · · · pkr −1

r (p1 − 1) · · · (pr − 1).
Now use the inequalities p − 1 >

√
p and k − 1

2 ≥ k/2 to obtain φ(n) ≥
2k0−1 pk1/2

1 · · · pkr /2
r .]

(b) If the integer n > 1 has r distinct prime factors, then φ(n) ≥ n/2r .
(c) If n > 1 is a composite number, then φ(n) ≤ n − √

n.
[Hint: Let p be the smallest prime divisor of n, so that p ≤ √

n. Then
φ(n) ≤ n(1 − 1/p).]

8. Prove that if the integer n has r distinct odd prime factors, then 2r | φ(n).
9. Prove the following:

(a) If n and n + 2 are a pair of twin primes, then φ(n + 2) = φ(n) + 2; this also holds
for n = 12, 14, and 20.

(b) If p and 2p + 1 are both odd primes, then n = 4p satisfies φ(n + 2) = φ(n) + 2.
10. If every prime that divides n also divides m, establish that φ(nm) = nφ(m); in particular,

φ(n2) = nφ(n) for every positive integer n.
11. (a) If φ(n) | n − 1, prove that n is a square-free integer.

[Hint: Assume that n has the prime factorization n = pk1
1 pk2

2 · · · pkr
r , where k1 ≥ 2.

Then p1 | φ(n), whence p1 | n − 1, which leads to a contradiction.]
(b) Show that if n = 2k or 2k3 j , with k and j positive integers, then φ(n) | n.

12. If n = pk1
1 pk2

2 · · · pkr
r , derive the following inequalities:

(a) σ (n)φ(n) ≥ n2(1 − 1/p2
1)(1 − 1/p2

2) · · · (1 − 1/p2
r ).

(b) τ (n)φ(n) ≥ n.
[Hint: Show that τ (n)φ(n) ≥ 2r · n(1/2)r .]



P1: BINAYA KUMAR DASH/BINAYA KUMAR DASH P2: IML/OVY QC: IML/OVY T1: BINAYA KUMAR DASH

bur83147_ch07_129_146 Burton DQ032A-Elementary-v2.cls November 9, 2009 11:1

136 ELEMENTARY NUMBER THEORY

13. Assuming that d | n, prove that φ(d) | φ(n).
[Hint: Work with the prime factorizations of d and n.]

14. Obtain the following two generalizations of Theorem 7.2:
(a) For positive integers m and n, where d = gcd(m, n),

φ(m)φ(n) = φ(mn)
φ(d)

d

(b) For positive integers m and n,

φ(m)φ(n) = φ(gcd(m, n))φ(lcm(m, n))

15. Prove the following:
(a) There are infinitely many integers n for which φ(n) = n/3.

[Hint: Consider n = 2k3 j , where k and j are positive integers.]
(b) There are no integers n for which φ(n) = n/4.

16. Show that the Goldbach conjecture implies that for each even integer 2n there exist
integers n1 and n2 with φ(n1) + φ(n2) = 2n.

17. Given a positive integer k, show the following:
(a) There are at most a finite number of integers n for which φ(n) = k.
(b) If the equation φ(n) = k has a unique solution, say n = n0, then 4 | n0.

[Hint: See Problems 4(a) and 4(b).]
A famous conjecture of R. D. Carmichael (1906) is that there is no k for which the
equation φ(n) = k has precisely one solution; it has been proved that any counterex-
ample n must exceed 1010000000.

18. Find all solutions of φ(n) = 16 and φ(n) = 24.
[Hint: If n = pk1

1 pk2
2 · · · pkr

r satisfies φ(n) = k, then n = [k/�(pi − 1)]�pi . Thus the
integers di = pi − 1 can be determined by the conditions (1) di | k, (2) di + 1 is prime,
and (3) k/�di contains no prime factor not in �pi .]

19. (a) Prove that the equation φ(n) = 2p, where p is a prime number and 2p + 1 is com-
posite, is not solvable.

(b) Prove that there is no solution to the equation φ(n) = 14, and that 14 is the smallest
(positive) even integer with this property.

20. If p is a prime and k ≥ 2, show that φ(φ(pk)) = pk−2φ((p − 1)2).
21. Verify that φ(n) σ (n) is a perfect square when n = 63457 = 23 · 31 · 89.

7.3 EULER’S THEOREM

As remarked earlier, the first published proof of Fermat’s theorem (namely that
a p−1 ≡ 1 (mod p) if p � | a) was given by Euler in 1736. Somewhat later, in 1760,
he succeeded in generalizing Fermat’s theorem from the case of a prime p to
an arbitrary positive integer n. This landmark result states: if gcd(a, n) = 1, then
aφ(n) ≡ 1 (mod n).

For example, putting n = 30 and a = 11, we have

11φ(30) ≡ 118 ≡ (112)4 ≡ (121)4 ≡ 14 ≡ 1 (mod 30)

As a prelude to launching our proof of Euler’s generalization of Fermat’s theo-
rem, we require a preliminary lemma.
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Lemma. Let n > 1 and gcd(a, n) = 1. If a1, a2, . . . , aφ(n) are the positive integers less
than n and relatively prime to n, then

aa1, aa2, . . . , aaφ(n)

are congruent modulo n to a1, a2, . . . , aφ(n) in some order.

Proof. Observe that no two of the integers aa1, aa2, . . . , aaφ(n) are congruent modulo
n. For if aai ≡ aa j (mod n), with 1 ≤ i < j ≤ φ(n), then the cancellation law yields
ai ≡ a j (mod n) and thus ai = a j , a contradiction. Furthermore, because gcd(ai , n) = 1
for all i and gcd(a, n) = 1, the lemma preceding Theorem 7.2 guarantees that each of
the aai is relatively prime to n.

Fixing on a particular aai , there exists a unique integer b, where 0 ≤ b < n, for
which aai ≡ b (mod n). Because

gcd(b, n) = gcd(aai , n) = 1

b must be one of the integers a1, a2, . . . , aφ(n). All told, this proves that the numbers
aa1, aa2, . . . , aaφ(n) and the numbers a1, a2, . . . , aφ(n) are identical (modulo n) in a
certain order.

Theorem 7.5 Euler. If n ≥ 1 and gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

Proof. There is no harm in taking n > 1. Let a1, a2, . . . , aφ(n) be the positive integers
less than n that are relatively prime to n. Because gcd(a, n) = 1, it follows from the
lemma that aa1, aa2, . . . , aaφ(n) are congruent, not necessarily in order of appearance,
to a1, a2, . . . , aφ(n). Then

aa1 ≡ a′
1 (mod n)

aa2 ≡ a′
2 (mod n)

...
...

aaφ(n) ≡ a′
φ(n) (mod n)

where a′
1, a′

2, . . . , a′
φ(n) are the integers a1, a2, . . . , aφ(n) in some order. On taking the

product of these φ(n) congruences, we get

(aa1)(aa2) · · · (aaφ(n)) ≡ a′
1a′

2 · · · a′
φ(n) (mod n)

≡ a1a2 · · · aφ(n) (mod n)

and so

aφ(n)(a1a2 · · · aφ(n)) ≡ a1a2 · · · aφ(n) (mod n)

Because gcd(ai , n) = 1 for each i , the lemma preceding Theorem 7.2 implies that
gcd(a1a2 · · · aφ(n), n) = 1. Therefore, we may divide both sides of the foregoing
congruence by the common factor a1a2 · · · aφ(n), leaving us with

aφ(n) ≡ 1 (mod n)

This proof can best be illustrated by carrying it out with some specific numbers.
Let n = 9, for instance. The positive integers less than and relatively prime to 9 are

1, 2, 4, 5, 7, 8



P1: BINAYA KUMAR DASH/BINAYA KUMAR DASH P2: IML/OVY QC: IML/OVY T1: BINAYA KUMAR DASH

bur83147_ch07_129_146 Burton DQ032A-Elementary-v2.cls November 9, 2009 11:1

138 ELEMENTARY NUMBER THEORY

These play the role of the integers a1, a2, . . . , aφ(n) in the proof of Theorem 7.5. If
a = −4, then the integers aai are

−4, −8, −16, −20, −28, −32

where, modulo 9,

−4 ≡ 5 −8 ≡ 1 −16 ≡ 2 −20 ≡ 7 −28 ≡ 8 −32 ≡ 4

When the above congruences are all multiplied together, we obtain

(−4)(−8)(−16)(−20)(−28)(−32) ≡ 5 · 1 · 2 · 7 · 8 · 4 (mod 9)

which becomes

(1 · 2 · 4 · 5 · 7 · 8)(−4)6 ≡ (1 · 2 · 4 · 5 · 7 · 8) (mod 9)

Being relatively prime to 9, the six integers 1, 2, 4, 5, 7, 8 may be canceled succes-
sively to give

(−4)6 ≡ 1 (mod 9)

The validity of this last congruence is confirmed by the calculation

(−4)6 ≡ 46 ≡ (64)2 ≡ 12 ≡ 1 (mod 9)

Note that Theorem 7.5 does indeed generalize the one credited to Fermat, which
we proved earlier. For if p is a prime, thenφ(p) = p − 1; hence, when gcd(a, p) = 1,
we get

a p−1 ≡ aφ(p) ≡ 1 (mod p)

and so we have the following corollary.

Corollary Fermat. If p is a prime and p � | a, then a p−1 ≡ 1 (mod p).

Example 7.2. Euler’s theorem is helpful in reducing large powers modulo n. To cite a
typical example, let us find the last two digits in the decimal representation of 3256. This
is equivalent to obtaining the smallest nonnegative integer to which 3256 is congruent
modulo 100. Because gcd(3, 100) = 1 and

φ(100) = φ(22 · 52) = 100

(
1 − 1

2

) (
1 − 1

5

)
= 40

Euler’s theorem yields

340 ≡ 1 (mod 100)

By the Division Algorithm, 256 = 6 · 40 + 16; whence

3256 ≡ 36·40+16 ≡ (340)6316 ≡ 316 (mod 100)

and our problem reduces to one of evaluating 316, modulo 100. The method of succes-
sive squaring yields the congruences

32 ≡ 9 (mod 100) 38 ≡ 61 (mod 100)

34 ≡ 81 (mod 100) 316 ≡ 21 (mod 100)
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There is another path to Euler’s theorem, one which requires the use of Fermat’s
theorem.

Second Proof of Euler’s Theorem. To start, we argue by induction that if p � | a (p a
prime), then

aφ(pk ) ≡ 1 (mod pk) k > 0 (1)

When k = 1, this assertion reduces to the statement of Fermat’s theorem. Assuming
the truth of Eq. (1) for a fixed value of k, we wish to show that it is true with k replaced
by k + 1.

Because Eq. (1) is assumed to hold, we may write

aφ(pk ) = 1 + qpk

for some integer q . Also notice that

φ(pk+1) = pk+1 − pk = p(pk − pk−1) = pφ(pk)

Using these facts, along with the binomial theorem, we obtain

aφ(pk+1) = a pφ(pk )

= (aφ(pk ))p

= (1 + qpk)p

= 1 +
(

p

1

)
(qpk) +

(
p

2

)
(qpk)2 + · · ·

+
(

p

p − 1

)
(qpk)p−1 + (qpk)p

≡ 1 +
(

p

1

)
(qpk) (mod pk+1)

But p | (
p

1
), and so pk+1 | (

p

1
)(qpk). Thus, the last-written congruence becomes

aφ(pk+1) ≡ 1 (mod pk+1)

completing the induction step.
Let gcd(a, n) = 1 and n have the prime-power factorization n = pk1

1 pk2
2 · · · pkr

r .
In view of what already has been proven, each of the congruences

aφ(p
ki
i ) ≡ 1

(
mod pki

i

)
i = 1, 2, . . . , r (2)

holds. Noting that φ(n) is divisible by φ(pki
i ), we may raise both sides of Eq. (2) to the

power φ(n)/φ(pki
i ) and arrive at

aφ(n) ≡ 1
(
mod pki

i

)
i = 1, 2, . . . , r

Inasmuch as the moduli are relatively prime, this leads us to the relation

aφ(n) ≡ 1
(
mod pk1

1 pk2
2 · · · pkr

r

)
or aφ(n) ≡ 1 (mod n).

The usefulness of Euler’s theorem in number theory would be hard to exaggerate.
It leads, for instance, to a different proof of the Chinese Remainder Theorem. In other
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words, we seek to establish that if gcd(ni , n j ) = 1 for i �= j , then the system of linear
congruences

x ≡ ai (mod ni ) i = 1, 2, . . . , r

admits a simultaneous solution. Let n = n1n2 · · · nr , and put Ni = n/ni for n =
1, 2, . . . , r . Then the integer

x = a1 Nφ(n1)
1 + a2 Nφ(n2)

2 + · · · + ar Nφ(nr )
r

fulfills our requirements. To see this, first note that N j ≡ 0 (mod ni ) whenever i �= j ;
whence,

x ≡ ai Nφ(ni )
i (mod ni )

But because gcd(Ni , ni ) = 1, we have

Nφ(ni )
i ≡ 1 (mod ni )

and so x ≡ ai (mod ni ) for each i .
As a second application of Euler’s theorem, let us show that if n is an odd integer

that is not a multiple of 5, then n divides an integer all of whose digits are equal to
1 (for example, 7 | 111111). Because gcd(n, 10) = 1 and gcd(9, 10) = 1, we have
gcd(9n, 10) = 1. Quoting Theorem 7.5, again,

10φ(9n) ≡ 1 (mod 9n)

This says that 10φ(9n) − 1 = 9nk for some integer k or, what amounts to the same
thing,

kn = 10φ(9n) − 1

9
The right-hand side of this expression is an integer whose digits are all equal to 1,
each digit of the numerator being clearly equal to 9.

PROBLEMS 7.3

1. Use Euler’s theorem to establish the following:
(a) For any integer a, a37 ≡ a (mod 1729).

[Hint: 1729 = 7 · 13 · 19.]
(b) For any integer a, a13 ≡ a (mod 2730).

[Hint: 2730 = 2 · 3 · 5 · 7 · 13.]
(c) For any odd integer a, a33 ≡ a (mod 4080).

[Hint: 4080 = 15 · 16 · 17.]
2. Use Euler’s theorem to confirm that, for any integer n ≥ 0,

51 | 1032n+9 − 7

3. Prove that 215 − 23 divides a15 − a3 for any integer a.
[Hint: 215 − 23 = 5 · 7 · 8 · 9 · 13.]

4. Show that if gcd(a, n) = gcd(a − 1, n) = 1, then

1 + a + a2 + · · · + aφ(n)−1 ≡ 0 (mod n)

[Hint: Recall that aφ(n) − 1 = (a − 1)(aφ(n)−1 + · · · + a2 + a + 1).]
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5. If m and n are relatively prime positive integers, prove that

mφ(n) + nφ(m) ≡ 1 (mod mn)

6. Fill in any missing details in the following proof of Euler’s theorem: Let p be a prime
divisor of n and gcd(a, p) = 1. By Fermat’s theorem, a p−1 ≡ 1 (mod p), so that a p−1 =
1 + tp for some t . Therefore a p(p−1) = (1 + tp)p = 1 + ( p

1 )(tp) + · · · + (tp)p ≡ 1
(mod p2) and, by induction, a pk−1(p−1) ≡ 1 (mod pk), where k = 1, 2, . . . . Raise both
sides of this congruence to the φ(n)/pk−1(p − 1) power to get aφ(n) ≡ 1 (mod pk). Thus,
aφ(n) ≡ 1 (mod n).

7. Find the units digit of 3100 by means of Euler’s theorem.
8. (a) If gcd(a, n) = 1, show that the linear congruence ax ≡ b (mod n) has the solution

x ≡ baφ(n)−1 (mod n).
(b) Use part (a) to solve the linear congruences 3x ≡ 5 (mod 26), 13x ≡ 2 (mod 40),

and 10x ≡ 21 (mod 49).
9. Use Euler’s theorem to evaluate 2100000 (mod 77).

10. For any integer a, show that a and a4n+1 have the same last digit.
11. For any prime p, establish each of the assertions below:

(a) τ (p!) = 2τ ((p − 1)!).
(b) σ (p!) = (p + 1)σ ((p − 1)!).
(c) φ(p!) = (p − 1)φ((p − 1)!).

12. Given n ≥ 1, a set of φ(n) integers that are relatively prime to n and that are incongruent
modulo n is called a reduced set of residues modulo n (that is, a reduced set of residues
are those members of a complete set of residues modulo n that are relatively prime to n).
Verify the following:
(a) The integers −31, −16, −8, 13, 25, 80 form a reduced set of residues modulo 9.
(b) The integers 3, 32, 33, 34, 35, 36 form a reduced set of residues modulo 14.
(c) The integers 2, 22, 23, . . . , 218 form a reduced set of residues modulo 27.

13. If p is an odd prime, show that the integers

− p − 1

2
, . . . ,−2, −1, 1, 2, . . . ,

p − 1

2
form a reduced set of residues modulo p.

7.4 SOME PROPERTIES OF THE PHI-FUNCTION

The next theorem points out a curious feature of the phi-function; namely, that the
sum of the values of φ(d), as d ranges over the positive divisors of n, is equal to n
itself. This was first noticed by Gauss.

Theorem 7.6 Gauss. For each positive integer n ≥ 1,

n =
∑
d | n

φ(d)

the sum being extended over all positive divisors of n.

Proof. The integers between 1 and n can be separated into classes as follows: If d is a
positive divisor of n, we put the integer m in the class Sd provided that gcd(m, n) = d.
Stated in symbols,

Sd = {m | gcd(m, n) = d; 1 ≤ m ≤ n}
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Now gcd(m, n) = d if and only if gcd(m/d, n/d) = 1. Thus, the number of integers
in the class Sd is equal to the number of positive integers not exceeding n/d that are
relatively prime to n/d; in other words, equal to φ(n/d). Because each of the n integers
in the set {1, 2, . . . , n} lies in exactly one class Sd , we obtain the formula

n =
∑
d | n

φ
(n

d

)

But as d runs through all positive divisors of n, so does n/d; hence,

∑
d | n

φ
(n

d

)
=

∑
d | n

φ(d)

which proves the theorem.

Example 7.3. A simple numerical example of what we have just said is provided by
n = 10. Here, the classes Sd are

S1 = {1, 3, 7, 9}
S2 = {2, 4, 6, 8}
S5 = {5}

S10 = {10}

These contain φ(10) = 4, φ(5) = 4, φ(2) = 1, and φ(1) = 1 integers, respectively.
Therefore,

∑
d | 10

φ(d) = φ(10) + φ(5) + φ(2) + φ(1)

= 4 + 4 + 1 + 1 = 10

It is instructive to give a second proof of Theorem 7.6, this one depending on
the fact that φ is multiplicative. The details are as follows. If n = 1, then clearly

∑
d | n

φ(d) =
∑
d | 1

φ(d) = φ(1) = 1 = n

Assuming that n > 1, let us consider the number-theoretic function

F(n) =
∑
d | n

φ(d)

Because φ is known to be a multiplicative function, Theorem 6.4 asserts that F is
also multiplicative. Hence, if n = pk1

1 pk2
2 · · · pkr

r is the prime factorization of n, then

F(n) = F
(

pk1
1

)
F

(
pk2

2

) · · · F
(

pkr
r

)
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For each value of i ,

F(pki
i ) =

∑
d | p

ki
i

φ(d)

= φ(1) + φ(pi ) + φ
(

p2
i

) + φ
(

p3
i

) + · · · + φ
(

pki
i

)
= 1 + (pi − 1) + (

p2
i − pi

) + (
p3

i − p2
i

) + · · · + (
pki

i − pki −1
i

)
= pki

i

because the terms in the foregoing expression cancel each other, save for the term
pki

i . Knowing this, we end up with

F(n) = pk1
1 pk2

2 · · · pkr
r = n

and so

n =
∑
d | n

φ(d)

as desired.
We should mention in passing that there is another interesting identity that in-

volves the phi-function.

Theorem 7.7. For n > 1, the sum of the positive integers less than n and relatively
prime to n is 1

2 nφ(n).

Proof. Let a1, a2, . . . , aφ(n) be the positive integers less than n and relatively prime to
n. Now because gcd(a, n) = 1 if and only if gcd(n − a, n) = 1, the numbers n − a1,
n − a2, . . . , n − aφ(n) are equal in some order to a1, a2, . . . , aφ(n). Thus,

a1 + a2 + · · · + aφ(n) = (n − a1) + (n − a2) + · · · + (n − aφ(n))

= φ(n)n − (a1 + a2 + · · · + aφ(n))

Hence,

2(a1 + a2 + · · · + aφ(n)) = φ(n)n

leading to the stated conclusion.

Example 7.4. Consider the case where n = 30. The φ(30) = 8 integers that are less
than 30 and relatively prime to it are

1, 7, 11, 13, 17, 19, 23, 29

In this setting, we find that the desired sum is

1 + 7 + 11 + 13 + 17 + 19 + 23 + 29 = 120 = 1

2
· 30 · 8

Also note the pairings

1 + 29 = 30 7 + 23 = 30 11 + 19 = 30 13 + 17 = 30
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This is a good point at which to give an application of the Möbius inversion
formula.

Theorem 7.8. For any positive integer n,

φ(n) = n
∑
d | n

μ(d)

d

Proof. The proof is deceptively simple. If we apply the inversion formula to

F(n) = n =
∑
d | n

φ(d)

the result is

φ(n) =
∑
d | n

μ(d)F
(n

d

)

=
∑
d | n

μ(d)
n

d

Let us again illustrate the situation where n = 10. As easily can be seen,

10
∑
d | 10

μ(d)

d
= 10

[
μ(1) + μ(2)

2
+ μ(5)

5
+ μ(10)

10

]

= 10

[
1 + (−1)

2
+ (−1)

5
+ (−1)2

10

]

= 10

[
1 − 1

2
− 1

5
+ 1

10

]
= 10 · 2

5
= 4 = φ(10)

Starting with Theorem 7.8, it is an easy matter to determine the value of the phi-
function for any positive integer n. Suppose that the prime-power decomposition of
n is n = pk1

1 pk2
2 · · · pkr

r , and consider the product

P =
∏
pi | n

(
μ(1) + μ(pi )

pi
+ · · · + μ(pki

i )

pki
i

)

Multiplying this out, we obtain a sum of terms of the form

μ(1)μ(pa1
1 )μ(pa2

2 ) · · · μ(par
r )

pa1
1 pa2

2 · · · par
r

0 ≤ ai ≤ ki

or, because μ is known to be multiplicative,

μ(pa1
1 pa2

2 · · · par
r )

pa1
1 pa2

2 · · · par
r

= μ(d)

d
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where the summation is over the set of divisors d = pa1
1 pa2

2 · · · par
r of n. Hence,

P = ∑
d | n μ(d)/d. It follows from Theorem 7.8 that

φ(n) = n
∑
d | n

μ(d)

d
= n

∏
pi | n

(
μ(1) + μ(pi )

pi
+ · · · + μ(pki

i )

pki
i

)

But μ(pai
i ) = 0 whenever ai ≥ 2. As a result, the last-written equation reduces to

φ(n) = n
∏
pi | n

(
μ(1) + μ(pi )

pi

)
= n

∏
pi | n

(
1 − 1

pi

)

which agrees with the formula established earlier by different reasoning. What is
significant about this argument is that no assumption is made concerning the multi-
plicative character of the phi-function, only of μ.

PROBLEMS 7.4

1. For a positive integer n, prove that

∑
d | n

(−1)n/dφ(d) =
{

0 if n is even

−n if n is odd

[Hint: If n = 2k N , where N is odd, then∑
d | n

(−1)n/dφ(d) =
∑

d | 2k−1 N

φ(d) −
∑
d | N

φ(2kd).]

2. Confirm that
∑

d | 36 φ(d) = 36 and
∑

d | 36(−1)36/dφ(d) = 0.
3. For a positive integer n, prove that

∑
d | n μ2(d)/φ(d) = n/φ(n).

[Hint: Both sides of the equation are multiplicative functions.]
4. Use Problem 4(c), Section 6.2, to prove n

∑
d | n μ(d)/d = φ(n).

5. If the integer n > 1 has the prime factorization n = pk1
1 pk2

2 · · · pkr
r , establish each of the

following:
(a)

∑
d | n

μ(d)φ(d) = (2 − p1)(2 − p2) · · · (2 − pr ).

(b)
∑
d | n

dφ(d) =
(

p2k1+1
1 + 1

p1 + 1

) (
p2k2+1

2 + 1

p2 + 1

)
· · ·

(
p2kr +1

r + 1

pr + 1

)
.

(c)
∑
d | n

φ(d)

d
=

(
1 + k1(p1 − 1)

p1

) (
1 + k2(p2 − 1)

p2

)
· · ·

(
1 + kr (pr − 1)

pr

)
.

[Hint: For part (a), use Problem 3, Section 6.2.]
6. Verify the formula

∑n
d=1 φ(d)[n/d] = n(n + 1)/2 for any positive integer n.

[Hint: This is a direct application of Theorems 6.11 and 7.6.]
7. If n is a square-free integer, prove that

∑
d | n σ (dk−1)φ(d) = nk for all integers k ≥ 2.

8. For a square-free integer n > 1, show that τ (n2) = n if and only if n = 3.
9. Prove that 3 | σ (3n + 2) and 4 | σ (4n + 3) for any positive integer n.
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10. (a) Given k > 0, establish that there exists a sequence of k consecutive integers n + 1,
n + 2, . . . , n + k satisfying

μ(n + 1) = μ(n + 2) = · · · = μ(n + k) = 0

[Hint: Consider the following system of linear congruences, where pk is the kth
prime:

x ≡ −1 (mod 4), x ≡ −2 (mod 9), . . . , x ≡ −k (mod p2
k ).]

(b) Find four consecutive integers for which μ(n) = 0.
11. Modify the proof of Gauss’ theorem to establish that

n∑
k=1

gcd(k, n) =
∑
d | n

dφ
(n

d

)

= n
∑
d | n

φ(d)

d
for n ≥ 1

12. For n > 2, establish the inequality φ(n2) + φ((n + 1)2) ≤ 2n2.
13. Given an integer n, prove that there exists at least one k for which n | φ(k).
14. Show that if n is a product of twin primes, say n = p(p + 2), then

φ(n)σ (n) = (n + 1)(n − 3)

15. Prove that
∑

d | n σ (d)φ(n/d) = nτ (n) and
∑

d | n τ (d)φ(n/d) = σ (n).
16. If a1, a2, . . . , aφ(n) is a reduced set of residues modulo n, show that

a1 + a2 + · · · + aφ(n) ≡ 0 (mod n) for n > 2



P1: BINAYA KUMAR DASH/BINAYA KUMAR DASH P2: IML/OVY QC: IML/OVY T1: BINAYA KUMAR DASH

bur83147_ch08_147_168 Burton DQ032A-Elementary-v2.cls November 10, 2009 12:42

CHAPTER

8
PRIMITIVE ROOTS AND INDICES

. . . mathematical proofs, like diamonds, are hard as well as clear, and will be
touched with nothing but strict reasoning.

JOHN LOCKE

8.1 THE ORDER OF AN INTEGER MODULO n

In view of Euler’s theorem, we know that aφ(n) ≡ 1 (mod n), whenever gcd(a, n) = 1.
Yet there are often powers of a smaller than aφ(n) that are congruent to 1 modulo n.
This prompts the following definition.

Definition 8.1. Let n > 1 and gcd(a, n) = 1. The order of a modulo n (in older ter-
minology: the exponent to which a belongs modulo n) is the smallest positive integer
k such that ak ≡ 1 (mod n).

Consider the successive powers of 2 modulo 7. For this modulus, we obtain the
congruences

21 ≡ 2, 22 ≡ 4, 23 ≡ 1, 24 ≡ 2, 25 ≡ 4, 26 ≡ 1, . . .

from which it follows that the integer 2 has order 3 modulo 7.
Observe that if two integers are congruent modulo n, then they have the same

order modulo n. For if a ≡ b (mod n) and ak ≡ 1 (mod n), Theorem 4.2 implies that
ak ≡ bk (mod n), whence bk ≡ 1 (mod n).

It should be emphasized that our definition of order modulo n concerns only
integers a for which gcd(a, n) = 1. Indeed, if gcd(a, n) > 1, then we know from

147
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Theorem 4.7 that the linear congruence ax ≡ 1 (mod n) has no solution; hence, the
relation

ak ≡ 1 (mod n) k ≥ 1

cannot hold, for this would imply that x = ak−1 is a solution of ax ≡ 1 (mod n).
Thus, whenever there is reference to the order of a modulo n, it is to be assumed
that gcd(a, n) = 1, even if it is not explicitly stated.

In the example given previously, we have 2k ≡ 1 (mod 7) whenever k is a
multiple of 3, where 3 is the order of 2 modulo 7. Our first theorem shows that this
is typical of the general situation.

Theorem 8.1. Let the integer a have order k modulo n. Then ah ≡ 1 (mod n) if and
only if k | h; in particular, k | φ(n).

Proof. Suppose that we begin with k | h, so that h = jk for some integer j . Because
ak ≡ 1 (mod n), Theorem 4.2 yields (ak) j ≡ 1 j (mod n) or ah ≡ 1 (mod n).

Conversely, let h be any positive integer satisfying ah ≡ 1 (mod n). By the Division
Algorithm, there exist q and r such that h = qk + r , where 0 ≤ r < k. Consequently,

ah = aqk+r = (ak)qar

By hypothesis, both ah ≡ 1 (mod n) and ak ≡ 1 (mod n), the implication of which is
that ar ≡ 1 (mod n). Because 0 ≤ r < k, we end up with r = 0; otherwise, the choice
of k as the smallest positive integer such that ak ≡ 1 (mod n) is contradicted. Hence,
h = qk, and k | h.

Theorem 8.1 expedites the computation when we attempt to find the order of
an integer a modulo n; instead of considering all powers of a, the exponents can be
restricted to the divisors of φ(n). Let us obtain, by way of illustration, the order of
2 modulo 13. Because φ(13) = 12, the order of 2 must be one of the integers 1, 2,
3, 4, 6, 12. From

21 ≡ 2 22 ≡ 4 23 ≡ 8 24 ≡ 3 26 ≡ 12 212 ≡ 1 (mod 13)

it is seen that 2 has order 12 modulo 13.
For an arbitrarily selected divisor d of φ(n), it is not always true that there exists

an integer a having order d modulo n. An example is n = 12. Here φ(12) = 4, yet
there is no integer that is of order 4 modulo 12; indeed, we find that

11 ≡ 52 ≡ 72 ≡ 112 ≡ 1 (mod 12)

and therefore the only choice for orders is 1 or 2.
Here is another basic fact regarding the order of an integer.

Theorem 8.2. If the integer a has order k modulo n, then ai ≡ a j (mod n) if and only
if i ≡ j (mod k).

Proof. First, suppose that ai ≡ a j (mod n), where i ≥ j . Because a is relatively
prime to n, we may cancel a power of a to obtain ai− j ≡ 1 (mod n). According to
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Theorem 8.1, this last congruence holds only if k | i − j , which is just another way of
saying that i ≡ j (mod k).

Conversely, let i ≡ j (mod k). Then we have i = j + qk for some integer q. By
the definition of k, ak ≡ 1 (mod n), so that

ai ≡ a j+qk ≡ a j (ak)q ≡ a j (mod n)

which is the desired conclusion.

Corollary. If a has order k modulo n, then the integers a, a2, . . . , ak are incongruent
modulo n.

Proof. If ai ≡ a j (mod n) for 1 ≤ i ≤ j ≤ k, then the theorem ensures that
i ≡ j (mod k). But this is impossible unless i = j .

A fairly natural question presents itself: Is it possible to express the order of any
integral power of a in terms of the order of a? The answer is contained in Theorem 8.3.

Theorem 8.3. If the integer a has order k modulo n and h > 0, then ah has order
k/gcd(h, k) modulo n.

Proof. Let d = gcd(h, k). Then we may write h = h1d and k = k1d , with
gcd (h1, k1) = 1. Clearly,

(ah)k1 = (ah1d )k/d = (ak)h1 ≡ 1 (mod n)

If ah is assumed to have order r modulo n, then Theorem 8.1 asserts that r | k1. On the
other hand, because a has order k modulo n, the congruence

ahr ≡ (ah)r ≡ 1 (mod n)

indicates that k | hr ; in other words, k1d | h1dr or k1 | h1r . But gcd(k1, h1) = 1, and
therefore k1 | r . This divisibility relation, when combined with the one obtained earlier,
gives

r = k1 = k

d
= k

gcd(h, k)

proving the theorem.

The preceding theorem has a corollary for which the reader may supply a proof.

Corollary. Let a have order k modulo n. Then ah also has order k if and only if
gcd(h, k) = 1.

Let us see how all this works in a specific instance.

Example 8.1. The following table exhibits the orders modulo 13 of the positive
integers less than 13:

Integer 1 2 3 4 5 6 7 8 9 10 11 12

Order 1 12 3 6 4 12 12 4 3 6 12 2
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We observe that the order of 2 modulo 13 is 12, whereas the orders of 22 and 23

are 6 and 4, respectively; it is easy to verify that

6 = 12

gcd(2, 12)
and 4 = 12

gcd(3, 12)

in accordance with Theorem 8.3. The integers that also have order 12 modulo 13 are
powers 2k for which gcd(k, 12) = 1; namely,

21 ≡ 2 25 ≡ 6 27 ≡ 11 211 ≡ 7 (mod 13)

If an integer a has the largest order possible, then we call it a primitive root
of n.

Definition 8.2. If gcd(a, n) = 1 and a is of order φ(n) modulo n, then a is a primitive
root of the integer n.

To put it another way, n has a as a primitive root if aφ(n) ≡ 1 (mod n), but
ak �≡ 1 (mod n) for all positive integers k < φ(n).

It is easy to see that 3 is a primitive root of 7, for

31 ≡ 3 32 ≡ 2 33 ≡ 6 34 ≡ 4 35 ≡ 5 36 ≡ 1 (mod 7)

More generally, we can prove that primitive roots exist for any prime modulus, which
is a result of fundamental importance. Although it is possible for a primitive root of
n to exist when n is not a prime (for instance, 2 is a primitive root of 9), there is no
reason to expect that every integer n possesses a primitive root; indeed, the existence
of primitive roots is more often the exception than the rule.

Example 8.2. Let us show that if Fn = 22n + 1, n > 1, is a prime, then 2 is not a
primitive root of Fn . (Clearly, 2 is a primitive root of 5 = F1.) From the factorization
22n+1 − 1 = (22n + 1) (22n − 1), we have

22n+1 ≡ 1 (mod Fn)

which implies that the order of 2 modulo Fn does not exceed 2n+1. But if Fn is assumed
to be prime, then

φ(Fn) = Fn − 1 = 22n

and a straightforward induction argument confirms that 22n
> 2n+1, whenever n > 1.

Thus, the order of 2 modulo Fn is smaller than φ(Fn); referring to Definition 8.2, we
see that 2 cannot be a primitive root of Fn .

One of the chief virtues of primitive roots lies in our next theorem.

Theorem 8.4. Let gcd(a, n) = 1 and let a1, a2, . . . , aφ(n) be the positive integers less
than n and relatively prime to n. If a is a primitive root of n, then

a, a2, . . . , aφ(n)

are congruent modulo n to a1, a2, . . . , aφ(n), in some order.
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Proof. Because a is relatively prime to n, the same holds for all the powers of a; hence,
each ak is congruent modulo n to some one of the ai . The φ(n) numbers in the set
{a, a2, . . . , aφ(n)} are incongruent by the corollary to Theorem 8.2; thus, these powers
must represent (not necessarily in order of appearance) the integers a1, a2, . . . , aφ(n).

One consequence of what has just been proved is that, in those cases in which
a primitive root exists, we can now state exactly how many there are.

Corollary. If n has a primitive root, then it has exactly φ(φ(n)) of them.

Proof. Suppose that a is a primitive root of n. By the theorem, any other primitive
root of n is found among the members of the set {a, a2, . . . , aφ(n)}. But the number
of powers ak , 1 ≤ k ≤ φ(n), that have order φ(n) is equal to the number of integers k
for which gcd(k, φ(n)) = 1; there are φ(φ(n)) such integers, hence, φ(φ(n)) primitive
roots of n.

Theorem 8.4 can be illustrated by taking a = 2 and n = 9. Because φ(9) = 6,
the first six powers of 2 must be congruent modulo 9, in some order, to the positive
integers less than 9 and relatively prime to it. Now the integers less than and relatively
prime to 9 are 1, 2, 4, 5, 7, 8, and we see that

21 ≡ 2 22 ≡ 4 23 ≡ 8 24 ≡ 7 25 ≡ 5 26 ≡ 1 (mod 9)

By virtue of the corollary, there are exactly φ(φ(9)) = φ(6) = 2 primitive roots
of 9, these being the integers 2 and 5.

PROBLEMS 8.1

1. Find the order of the integers 2, 3, and 5:
(a) modulo 17.
(b) modulo 19.
(c) modulo 23.

2. Establish each of the statements below:
(a) If a has order hk modulo n, then ah has order k modulo n.
(b) If a has order 2k modulo the odd prime p, then ak ≡ −1 (mod p).
(c) If a has order n − 1 modulo n, then n is a prime.

3. Prove that φ(2n − 1) is a multiple of n for any n > 1.
[Hint: The integer 2 has order n modulo 2n − 1.]

4. Assume that the order of a modulo n is h and the order of b modulo n is k. Show that the
order of ab modulo n divides hk; in particular, if gcd(h, k) = 1, then ab has order hk.

5. Given that a has order 3 modulo p, where p is an odd prime, show that a + 1 must have
order 6 modulo p.
[Hint: From a2 + a + 1 ≡ 0 (mod p), it follows that (a + 1)2 ≡ a (mod p) and
(a + 1)3 ≡ −1 (mod p).]

6. Verify the following assertions:
(a) The odd prime divisors of the integer n2 + 1 are of the form 4k + 1.

[Hint: n2 ≡ −1 (mod p), where p is an odd prime, implies that 4 | φ(p) by
Theorem 8.1.]

(b) The odd prime divisors of the integer n4 + 1 are of the form 8k + 1.
(c) The odd prime divisors of the integer n2 + n + 1 that are different from 3 are of the

form 6k + 1.
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7. Establish that there are infinitely many primes of each of the forms 4k + 1, 6k + 1, and
8k + 1.
[Hint: Assume that there are only finitely many primes of the form 4k + 1; call them
p1, p2, . . . , pr . Consider the integer (2p1 p2 · · · pr )2 + 1 and apply the previous prob-
lem.]

8. (a) Prove that if p and q are odd primes and q | a p − 1, then either q | a − 1 or else
q = 2kp + 1 for some integer k.
[Hint: Because a p ≡ 1 (mod q), the order of a modulo q is either 1 or p; in the latter
case, p | φ(q).]

(b) Use part (a) to show that if p is an odd prime, then the prime divisors of 2p − 1 are
of the form 2kp + 1.

(c) Find the smallest prime divisors of the integers 217 − 1 and 229 − 1.
9. (a) Verify that 2 is a primitive root of 19, but not of 17.

(b) Show that 15 has no primitive root by calculating the orders of 2, 4, 7, 8, 11, 13, and
14 modulo 15.

10. Let r be a primitive root of the integer n. Prove that rk is a primitive root of n if and only
if gcd(k, φ(n)) = 1.

11. (a) Find two primitive roots of 10.
(b) Use the information that 3 is a primitive root of 17 to obtain the eight primitive roots

of 17.
12. (a) Prove that if p and q > 3 are both odd primes and q | Rp, then q = 2kp + 1 for some

integer k.
(b) Find the smallest prime divisors of the repunits R5 = 11111 and R7 = 1111111.

13. (a) Let p > 5 be prime. If Rn is the smallest repunit for which p | Rn , establish that
n | p − 1. For example, R8 is the smallest repunit divisible by 73, and 8 | 72.
[Hint: The order of 10 modulo p is n.]

(b) Find the smallest Rn divisible by 13.

8.2 PRIMITIVE ROOTS FOR PRIMES

Because primitive roots play a crucial role in many theoretical investigations, a prob-
lem exerting a natural appeal is that of describing all integers that possess primitive
roots. We shall, over the course of the next few pages, prove the existence of primitive
roots for all primes. Before doing this, let us turn aside briefly to establish Lagrange’s
theorem, which deals with the number of solutions of a polynomial congruence.

Theorem 8.5 Lagrange. If p is a prime and

f (x) = an xn + an−1xn−1 + · · · + a1x + a0 an �≡ 0 (mod p)

is a polynomial of degree n ≥ 1 with integral coefficients, then the congruence

f (x) ≡ 0 (mod p)

has at most n incongruent solutions modulo p.

Proof. We proceed by induction on n, the degree of f (x). If n = 1, then our polynomial
is of the form

f (x) = a1x + a0
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Because gcd(a1, p) = 1, Theorem 4.7 asserts that the congruence a1x ≡ −a0

(mod p) has a unique solution modulo p. Thus, the theorem holds for n = 1.
Now assume inductively that the theorem is true for polynomials of degree k − 1,

and consider the case in which f (x) has degree k. Either the congruence f (x) ≡ 0
(mod p) has no solutions (and we are finished), or it has at least one solution, call it a.
If f (x) is divided by x − a, the result is

f (x) = (x − a)q(x) + r

in which q(x) is a polynomial of degree k − 1 with integral coefficients and r is an
integer. Substituting x = a, we obtain

0 ≡ f (a) = (a − a)q(a) + r = r (mod p)

and therefore f (x) ≡ (x − a)q(x) (mod p).
If b is another one of the incongruent solutions of f (x) ≡ 0 (mod p), then

0 ≡ f (b) ≡ (b − a)q(b) (mod p)

Because b − a �≡ 0 (mod p), we may cancel to conclude that q(b) ≡ 0 (mod p); in
other words, any solution of f (x) ≡ 0 (mod p) that is different from a must satisfy
q(x) ≡ 0 (mod p). By our induction assumption, the latter congruence can possess at
most k − 1 incongruent solutions, and therefore f (x) ≡ 0 (mod p) has no more than
k incongruent solutions. This completes the induction step and the proof.

From this theorem, we can pass easily to the corollary.

Corollary. If p is a prime number and d | p − 1, then the congruence

xd − 1 ≡ 0 (mod p)

has exactly d solutions.

Proof. Because d | p − 1, we have p − 1 = dk for some k. Then

x p−1 − 1 = (xd − 1) f (x)

where the polynomial f (x) = xd(k−1) + xd(k−2) + · · · + xd + 1 has integral
coefficients and is of degree d(k − 1) = p − 1 − d. By Lagrange’s theorem, the
congruence f (x) ≡ 0 (mod p) has at most p − 1 − d solutions. We also know
from Fermat’s theorem that x p−1 − 1 ≡ 0 (mod p) has precisely p − 1 incongruent
solutions; namely, the integers 1, 2, . . . , p − 1.

Now any solution x ≡ a (mod p) of x p−1 − 1 ≡ 0 (mod p) that is not a solution
of f (x) ≡ 0 (mod p) must satisfy xd − 1 ≡ 0 (mod p). For

0 ≡ a p−1 − 1 = (ad − 1) f (a) (mod p)

with p � | f (a), implies that p | ad − 1. It follows that xd − 1 ≡ 0 (mod p) must have
at least

p − 1 − (p − 1 − d) = d

solutions. This last congruence can possess no more than d solutions (Lagrange’s
theorem enters again) and, hence, has exactly d solutions.
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We take immediate advantage of this corollary to prove Wilson’s theorem in a
different way: given a prime p, define the polynomial f (x) by

f (x) = (x − 1)(x − 2) · · · (x − (p − 1)) − (x p−1 − 1)

= ap−2x p−2 + ap−3x p−3 + · · · + a1x + a0

which is of degree p − 2. Fermat’s theorem implies that the p − 1 integers
1, 2, . . . , p − 1 are incongruent solutions of the congruence

f (x) ≡ 0 (mod p)

But this contradicts Lagrange’s theorem, unless

ap−2 ≡ ap−3 ≡ · · · ≡ a1 ≡ a0 ≡ 0 (mod p)

It follows that, for any choice of the integer x ,

(x − 1)(x − 2) · · · (x − (p − 1)) − (x p−1 − 1) ≡ 0 (mod p)

Now substitute x = 0 to obtain

(−1)(−2) · · · (−(p − 1)) + 1 ≡ 0 (mod p)

or (−1)p−1(p − 1)! + 1 ≡ 0 (mod p). Either p − 1 is even or p = 2, in which case
−1 ≡ 1 (mod p); at any rate, we get

(p − 1)! ≡ −1 (mod p)

Lagrange’s theorem has provided us with the entering wedge. We are now in a
position to prove that, for any prime p, there exist integers with order corresponding
to each divisor of p − 1. We state this more precisely in Theorem 8.6.

Theorem 8.6. If p is a prime number and d | p − 1, then there are exactly φ(d)
incongruent integers having order d modulo p.

Proof. Let d | p − 1 and ψ(d) denote the number of integers k, 1 ≤ k ≤ p − 1, that
have order d modulo p. Because each integer between 1 and p − 1 has order d for
some d | p − 1,

p − 1 =
∑

d | p−1

ψ(d)

At the same time, Gauss’s theorem tells us that

p − 1 =
∑

d | p−1

φ(d)

and therefore, putting these together,∑
d | p−1

ψ(d) =
∑

d | p−1

φ(d) (1)

Our aim is to show that ψ(d) ≤ φ(d) for each divisor d of p − 1, because this, in
conjunction with Eq. (1), would produce the equality ψ(d) = φ(d) �= 0 (otherwise,
the first sum would be strictly smaller than the second).

Given an arbitrary divisor d of p − 1, there are two possibilities: we either
have ψ(d) = 0 or ψ(d) > 0. If ψ(d) = 0, then certainly ψ(d) ≤ φ(d). Suppose that
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ψ(d) > 0, so that there exists an integer a of order d . Then the d integers a, a2, . . . , ad

are incongruent modulo p and each of them satisfies the polynomial congruence

xd − 1 ≡ 0 (mod p) (2)

for, (ak)d ≡ (ad )k ≡ 1 (mod p). By the corollary to Lagrange’s theorem, there can be
no other solutions of Eq. (2). It follows that any integer having order d modulo p must
be congruent to one of a, a2, . . . , ad . But only φ(d) of the just-mentioned powers have
order d , namely those ak for which the exponent k has the property gcd(k, d) = 1.
Hence, in the present situation, ψ(d) = φ(d), and the number of integers having order
d modulo p is equal to φ(d). This establishes the result we set out to prove.

Taking d = p − 1 in Theorem 8.6, we arrive at the following corollary.

Corollary. If p is a prime, then there are exactly φ(p − 1) incongruent primitive roots
of p.

An illustration is afforded by the prime p = 13. For this modulus, 1 has order
1; 12 has order 2; 3 and 9 have order 3; 5 and 8 have order 4; 4 and 10 have order 6;
and four integers, namely 2, 6, 7, 11, have order 12. Thus,∑

d | 12

ψ(d) = ψ(1) + ψ(2) + ψ(3) + ψ(4) + ψ(6) + ψ(12)

= 1 + 1 + 2 + 2 + 2 + 4 = 12

as it should. Also notice that

ψ(1) = 1 = φ(1) ψ(4) = 2 = φ(4)

ψ(2) = 1 = φ(2) ψ(6) = 2 = φ(6)

ψ(3) = 2 = φ(3) ψ(12) = 4 = φ(12)

Incidentally, there is a shorter and more elegant way of proving that ψ(d) =
φ(d) for each d | p − 1. We simply subject the formula d = ∑

c | d ψ(c) to Möbius
inversion to deduce that

ψ(d) =
∑
c | d

μ(c)
d

c

In light of Theorem 7.8, the right-hand side of the foregoing equation is equal to φ(d).
Of course, the validity of this argument rests upon using the corollary to Theorem
8.5 to show that d = ∑

c | d ψ(c).
We can use this last theorem to give another proof of the fact that if p is a

prime of the form 4k + 1, then the quadratic congruence x2 ≡ −1 (mod p) admits
a solution. Because 4 | p − 1, Theorem 8.6 tells us that there is an integer a having
order 4 modulo p; in other words,

a4 ≡ 1 (mod p)

or equivalently,

(a2 − 1)(a2 + 1) ≡ 0 (mod p)
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Because p is a prime, it follows that either

a2 − 1 ≡ 0 (mod p) or a2 + 1 ≡ 0 (mod p)

If the first congruence held, then a would have order less than or equal to 2, a
contradiction. Hence, a2 + 1 ≡ 0 (mod p), making the integer a a solution to the
congruence x2 ≡ −1 (mod p).

Theorem 8.6, as proved, has an obvious drawback; although it does indeed imply
the existence of primitive roots for a given prime p, the proof is nonconstructive.
To find a primitive root, we usually must either proceed by brute force or fall back
on the extensive tables that have been constructed. The accompanying table lists the
smallest positive primitive root for each prime below 200.

Least positive Least positive
Prime primitive root Prime primitive root

2 1 89 3
3 2 97 5
5 2 101 2
7 3 103 5

11 2 107 2
13 2 109 6
17 3 113 3
19 2 127 3
23 5 131 2
29 2 137 3
31 3 139 2
37 2 149 2
41 6 151 6
43 3 157 5
47 5 163 2
53 2 167 5
59 2 173 2
61 2 179 2
67 2 181 2
71 7 191 19
73 5 193 5
79 3 197 2
83 2 199 3

If χ (p) designates the smallest positive primitive root of the prime p, then
the table presented shows that χ (p) ≤ 19 for all p < 200. In fact, χ (p) becomes
arbitrarily large as p increases without bound. The table suggests, although the
answer is not yet known, that there exist an infinite number of primes p for which
χ (p) = 2.

In most cases χ (p) is quite small. Among the 78498 odd primes up to 106,
χ (p) ≤ 6 holds for about 80% of these primes; χ (p) = 2 takes place for 29841
primes or approximately 37% of the time, whereas χ (p) = 3 happens for 17814
primes, or 22% of the time.
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In his Disquisitiones Arithmeticae, Gauss conjectured that there are infinitely
many primes having 10 as a primitive root. In 1927, Emil Artin generalized this
unresolved question as follows: for a not equal to 1, −1, or a perfect square, do
there exist infinitely many primes having a as a primitive root? Although there is
little doubt that this latter conjecture is true, it has yet to be proved. Recent work has
shown that there are infinitely many a’s for which Artin’s conjecture is true, and at
most two primes for which it fails.

The restrictions in Artin’s conjecture are justified as follows. Let a be a perfect
square, say a = x2, and let p be an odd prime with gcd(a, p) = 1. If p � | x , then
Fermat’s theorem yields x p−1 ≡ 1 (mod p), whence

a(p−1)/2 ≡ (x2)(p−1)/2 ≡ 1 (mod p)

Thus, a cannot serve as a primitive root of p [if p | x , then p | a and surely a p−1 �≡
1 (mod p)]. Furthermore, because (−1)2 = 1, −1 is not a primitive root of p when-
ever p − 1 > 2.

Example 8.3. Let us employ the various techniques of this section to find the φ(6) = 2
integers having order 6 modulo 31. To start, we know that there are

φ(φ(31)) = φ(30) = 8

primitive roots of 31. Obtaining one of them is a matter of trial and error. Because 25 ≡
1 (mod 31), the integer 2 is clearly ruled out. We need not search too far, because 3
turns out to be a primitive root of 31. Observe that in computing the integral powers of
3 it is not necessary to go beyond 315; for the order of 3 must divide φ(31) = 30 and
the calculation

315 ≡ (27)5 ≡ (−4)5 ≡ (−64)(16) ≡ −2(16) ≡ −1 �≡ 1 (mod 31)

shows that its order is greater than 15.
Because 3 is a primitive root of 31, any integer that is relatively prime to 31 is

congruent modulo 31 to an integer of the form 3k , where 1 ≤ k ≤ 30. Theorem 8.3
asserts that the order of 3k is 30/gcd(k, 30); this will equal 6 if and only if gcd(k, 30) = 5.
The values of k for which the last equality holds are k = 5 and k = 25. Thus our problem
is now reduced to evaluating 35 and 325 modulo 31. A simple calculation gives

35 ≡ (27)9 ≡ (−4)9 ≡ −36 ≡ 26 (mod 31)

325 ≡ (35)5 ≡ (26)5 ≡ (−5)5 ≡ (−125)(25) ≡ −1(25) ≡ 6 (mod 31)

so that 6 and 26 are the only integers having order 6 modulo 31.

PROBLEMS 8.2

1. If p is an odd prime, prove the following:
(a) The only incongruent solutions of x2 ≡ 1 (mod p) are 1 and p − 1.
(b) The congruence x p−2 + · · · + x2 + x + 1 ≡ 0 (mod p) has exactly p − 2 incongru-

ent solutions, and they are the integers 2, 3, . . . , p − 1.
2. Verify that each of the congruences x2 ≡ 1 (mod 15), x2 ≡ −1 (mod 65), and x2 ≡

−2 (mod 33) has four incongruent solutions; hence, Lagrange’s theorem need not hold
if the modulus is a composite number.
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3. Determine all the primitive roots of the primes p = 11, 19, and 23, expressing each as a
power of some one of the roots.

4. Given that 3 is a primitive root of 43, find the following:
(a) All positive integers less than 43 having order 6 modulo 43.
(b) All positive integers less than 43 having order 21 modulo 43.

5. Find all positive integers less than 61 having order 4 modulo 61.
6. Assuming that r is a primitive root of the odd prime p, establish the following facts:

(a) The congruence r (p−1)/2 ≡ −1 (mod p) holds.
(b) If r ′ is any other primitive root of p, then rr ′ is not a primitive root of p.

[Hint: By part (a), (rr ′)(p−1)/2 ≡ 1 (mod p).]
(c) If the integer r ′ is such that rr ′ ≡ 1 (mod p), then r ′ is a primitive root of p.

7. For a prime p > 3, prove that the primitive roots of p occur in incongruent pairs r , r ′
where rr ′ ≡ 1 (mod p).
[Hint: If r is a primitive root of p, consider the integer r ′ = r p−2.]

8. Let r be a primitive root of the odd prime p. Prove the following:
(a) If p ≡ 1 (mod 4), then −r is also a primitive root of p.
(b) If p ≡ 3 (mod 4), then −r has order (p − 1)/2 modulo p.

9. Give a different proof of Theorem 5.5 by showing that if r is a primitive root of the prime
p ≡ 1 (mod 4), then r (p−1)/4 satisfies the quadratic congruence x2 + 1 ≡ 0 (mod p).

10. Use the fact that each prime p has a primitive root to give a different proof of Wilson’s
theorem.
[Hint: If p has a primitive root r , then Theorem 8.4 implies that (p − 1)! ≡ r1+2+···+(p−1)

(mod p).]
11. If p is a prime, show that the product of the φ(p − 1) primitive roots of p is congruent

modulo p to (−1)φ(p−1).
[Hint: If r is a primitive root of p, then the integer rk is a primitive root of p provided
that gcd(k, p − 1) = 1; now use Theorem 7.7.]

12. For an odd prime p, verify that the sum

1n + 2n + 3n + · · · + (p − 1)n ≡
{

0 (mod p) if (p − 1) � | n
−1 (mod p) if (p − 1) | n

[Hint: If (p − 1) � | n, and r is a primitive root of p, then the indicated sum is congruent
modulo p to

1 + rn + r2n + · · · + r (p−2)n = r (p−1)n − 1

rn − 1
.]

8.3 COMPOSITE NUMBERS HAVING PRIMITIVE ROOTS

We saw earlier that 2 is a primitive root of 9, so that composite numbers can also
possess primitive roots. The next step in our program is to determine all composite
numbers for which there exist primitive roots. Some information is available in the
following two negative results.

Theorem 8.7. For k ≥ 3, the integer 2k has no primitive roots.

Proof. For reasons that will become clear later, we start by showing that if a is an odd
integer, then for k ≥ 3

a2k−2 ≡ 1 (mod 2k)
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If k = 3, this congruence becomes a2 ≡ 1 (mod 8), which is certainly true (indeed,
12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 (mod 8)). For k > 3, we proceed by induction on k. Assume
that the asserted congruence holds for the integer k; that is, a2k−2 ≡ 1 (mod 2k). This
is equivalent to the equation

a2k−2 = 1 + b2k

where b is an integer. Squaring both sides, we obtain

a2k−1 = (a2k−2
)2 = 1 + 2(b2k) + (b2k)2

= 1 + 2k+1(b + b22k−1)

≡ 1 (mod 2k+1)

so that the asserted congruence holds for k + 1 and, hence, for all k ≥ 3.
Now the integers that are relatively prime to 2k are precisely the odd integers, so

that φ(2k) = 2k−1. By what was just proved, if a is an odd integer and k ≥ 3,

aφ(2k )/2 ≡ 1 (mod 2k)

and, consequently, there are no primitive roots of 2k .

Another theorem in this same spirit is Theorem 8.8.

Theorem 8.8. If gcd(m, n) = 1, where m > 2 and n > 2, then the integer mn has no
primitive roots.

Proof. Consider any integer a for which gcd(a, mn) = 1; then gcd(a, m) = 1 and
gcd(a, n) = 1. Put h = lcm(φ(m), φ(n)) and d = gcd(φ(m), φ(n)).

Because φ(m) and φ(n) are both even (Theorem 7.4), surely d ≥ 2. In conse-
quence,

h = φ(m)φ(n)

d
≤ φ(mn)

2

Now Euler’s theorem asserts that aφ(m) ≡ 1 (mod m). Raising this congruence to the
φ(n)/d power, we get

ah = (aφ(m))φ(n)/d ≡ 1φ(n)/d ≡ 1 (mod m)

Similar reasoning leads to ah ≡ 1 (mod n). Together with the hypothesis gcd(m, n) = 1,
these congruences force the conclusion that

ah ≡ 1 (mod mn)

The point we wish to make is that the order of any integer relatively prime to mn does
not exceed φ(mn)/2, whence there can be no primitive roots for mn.

Some special cases of Theorem 8.8 are of particular interest, and we list these
below.

Corollary. The integer n fails to have a primitive root if either

(a) n is divisible by two odd primes, or
(b) n is of the form n = 2m pk , where p is an odd prime and m ≥ 2.
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The significant feature of this last series of results is that it restricts our search
for primitive roots to the integers 2, 4, pk , and 2pk , where p is an odd prime. In this
section, we prove that each of the numbers just mentioned has a primitive root, the
major task being the establishment of the existence of primitive roots for powers of
an odd prime. The argument is somewhat long-winded, but otherwise routine; for
the sake of clarity, it is broken down into several steps.

Lemma 1. If p is an odd prime, then there exists a primitive root r of p such that
r p−1 �≡ 1 (mod p2).

Proof. From Theorem 8.6, it is known that p has primitive roots. Choose one, and
call it r . If r p−1 �≡ 1 (mod p2), then we are finished. In the contrary case, replace r by
r ′ = r + p, which is also a primitive root of p. Then employing the binomial theorem,

(r ′)p−1 ≡ (r + p)p−1 ≡ r p−1 + (p − 1)pr p−2 (mod p2)

But we have assumed that r p−1 ≡ 1 (mod p2); hence,

(r ′)p−1 ≡ 1 − pr p−2 (mod p2)

Because r is a primitive root of p, gcd(r, p) = 1, and therefore p � | r p−2. The outcome
of all this is that (r ′)p−1 �≡ 1 (mod p2), which proves the lemma.

Corollary. If p is an odd prime, then p2 has a primitive root; in fact, for a primitive
root r of p, either r or r + p (or both) is a primitive root of p2.

Proof. The assertion is almost obvious: if r is a primitive root of p, then the order of
r modulo p2 is either p − 1 or p(p − 1) = φ(p2). The foregoing proof shows that if
r has order p − 1 modulo p2, then r + p is a primitive root of p2.

As an illustration of this corollary, we observe that 3 is a primitive root of 7, and
that both 3 and 10 are primitive roots of 72. Also, 14 is a primitive root of 29 but not
of 292.

To reach our goal, another somewhat technical lemma is needed.

Lemma 2. Let p be an odd prime and let r be a primitive root of p with the property
that r p−1 �≡ 1 (mod p2). Then for each positive integer k ≥ 2,

r pk−2(p−1) �≡ 1 (mod pk)

Proof. The proof proceeds by induction on k. By hypothesis, the assertion holds for
k = 2. Let us assume that it is true for some k ≥ 2 and show that it is true for k + 1.
Because gcd(r, pk−1) = gcd(r, pk) = 1, Euler’s theorem indicates that

r pk−2(p−1) = rφ(pk−1) ≡ 1 (mod pk−1)

Hence, there exists an integer a satisfying

r pk−2(p−1) = 1 + apk−1
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where p � | a by our induction hypothesis. Raise both sides of this last equation to the
pth power and expand to obtain

r pk−1(p−1) = (1 + apk−1)p ≡ 1 + apk (mod pk+1)

Because the integer a is not divisible by p, we have

r pk−1(p−1) �≡ 1 (mod pk+1)

This completes the induction step, thereby proving the lemma.

The hard work, for the moment, is over. We now stitch the pieces together to
prove that the powers of any odd prime have a primitive root.

Theorem 8.9. If p is an odd prime number and k ≥ 1, then there exists a primitive
root for pk .

Proof. The two lemmas allow us to choose a primitive root r of p for which r pk−2(p−1) �≡
1 (mod pk); in fact, any integer r satisfying the condition r p−1 �≡ 1 (mod p2) will do.
We argue that such an r serves as a primitive root for all powers of p.

Let n be the order of r modulo pk . In compliance with Theorem 8.1, n must
divide φ(pk) = pk−1(p − 1). Because rn ≡ 1 (mod pk) yields rn ≡ 1 (mod p), we
also have p − 1 | n. (Theorem 8.1 serves again.) Consequently, n assumes the form
n = pm(p − 1), where 0 ≤ m ≤ k − 1. If it happened that n �= pk−1(p − 1), then
pk−2(p − 1) would be divisible by n and we would arrive at

r pk−2(p−1) ≡ 1 (mod pk)

contradicting the way in which r was initially chosen. Therefore, n = pk−1(p − 1) and
r is a primitive root for pk .

This leaves only the case 2pk for our consideration.

Corollary. There are primitive roots for 2pk , where p is an odd prime and k ≥ 1.

Proof. Let r be a primitive root for pk . There is no harm in assuming that r is an odd
integer; for, if it is even, then r + pk is odd and is still a primitive root for pk . Then
gcd(r, 2pk) = 1. The order n of r modulo 2pk must divide

φ(2pk) = φ(2)φ(pk) = φ(pk)

But rn ≡ 1 (mod 2pk) implies that rn ≡ 1 (mod pk), and therefore φ(pk) | n. Together
these divisibility conditions force n = φ(2pk), making r a primitive root of 2pk .

The prime 5 has φ(4) = 2 primitive roots, namely, the integers 2 and 3. Because

25−1 ≡ 16 �≡ 1 (mod 25) and 35−1 ≡ 6 �≡ 1 (mod 25)

these also serve as primitive roots for 52 and, hence, for all higher powers of 5. The
proof of the last corollary guarantees that 3 is a primitive root for all numbers of the
form 2 · 5k .

In Theorem 8.10 we summarize what has been accomplished.
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Theorem 8.10. An integer n > 1 has a primitive root if and only if

n = 2, 4, pk, or 2pk

where p is an odd prime.

Proof. By virtue of Theorems 8.7 and 8.8, the only positive integers with primitive
roots are those mentioned in the statement of our theorem. It may be checked that 1 is
a primitive root for 2, and 3 is a primitive root of 4. We have just finished proving that
primitive roots exist for any power of an odd prime and for twice such a power.

This seems the opportune moment to mention that Euler gave an essentially
correct (although incomplete) proof in 1773 of the existence of primitive roots for
any prime p and listed all the primitive roots for p ≤ 37. Legendre, using Lagrange’s
theorem, managed to repair the deficiency and showed (1785) that there are φ(d)
integers of order d for each d | (p − 1). The greatest advances in this direction were
made by Gauss when, in 1801, he published a proof that there exist primitive roots
of n if and only if n = 2, 4, pk , and 2pk , where p is an odd prime.

PROBLEMS 8.3

1. (a) Find the four primitive roots of 26 and the eight primitive roots of 25.
(b) Determine all the primitive roots of 32, 33, and 34.

2. For an odd prime p, establish the following facts:
(a) There are as many primitive roots of 2pn as of pn .
(b) Any primitive root r of pn is also a primitive root of p.

[Hint: Let r have order k modulo p. Show that r pk ≡ 1 (mod p2), . . . , r pn−1k ≡
1 (mod pn) and, hence, φ(pn) | pn−1k.]

(c) A primitive root of p2 is also a primitive root of pn for n ≥ 2.
3. If r is a primitive root of p2, p being an odd prime, show that the solutions of the

congruence x p−1 ≡ 1 (mod p2) are precisely the integers r p, r2p, . . . , r (p−1)p.
4. (a) Prove that 3 is a primitive root of all integers of the form 7k and 2 · 7k .

(b) Find a primitive root for any integer of the form 17k .
5. Obtain all the primitive roots of 41 and 82.
6. (a) Prove that a primitive root r of pk , where p is an odd prime, is a primitive root of

2pk if and only if r is an odd integer.
(b) Confirm that 3, 33, 35, and 39 are primitive roots of 578 = 2 · 172, but that 34 and

317 are not.
7. Assume that r is a primitive root of the odd prime p and (r + tp)p−1 �≡ 1 (mod p2).

Show that r + tp is a primitive root of pk for each k ≥ 1.
8. If n = 2k0 pk1

1 pk2
2 · · · pkr

r is the prime factorization of n > 1, define the universal exponent
λ(n) of n by

λ(n) = lcm(λ(2k0 ), φ(pk1
1 ), . . . , φ(pkr

r ))

where λ(2) = 1, λ(22) = 2, and λ(2k) = 2k−2 for k ≥ 3. Prove the following statements
concerning the universal exponent:
(a) For n = 2, 4, pk , 2pk , where p is an odd prime, λ(n) = φ(n).
(b) If gcd(a, 2k) = 1, then aλ(2k ) ≡ 1 (mod 2k).

[Hint: For k ≥ 3, use induction on k and the fact that λ(2k+1) = 2λ(2k).]
(c) If gcd(a, n) = 1, then aλ(n) ≡ 1 (mod n).

[Hint: For each prime power pk occurring in n, aλ(n) ≡ 1 (mod pk).]
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9. Verify that, for 5040 = 24 · 32 · 5 · 7, λ(5040) = 12 and φ(5040) = 1152.
10. Use Problem 8 to show that if n �= 2, 4, pk , 2pk , where p is an odd prime, then n has no

primitive root.
[Hint: Except for the cases 2, 4, pk , 2pk , we have λ(n) | 1

2φ(n); hence, gcd(a, n) = 1
implies that aφ(n)/2 ≡ 1 (mod n).]

11. (a) Prove that if gcd(a, n) = 1, then the linear congruence ax ≡ b (mod n) has the
solution x ≡ baλ(n)−1 (mod n).

(b) Use part (a) to solve the congruences 13x ≡ 2 (mod 40) and 3x ≡ 13 (mod 77).

8.4 THE THEORY OF INDICES

The remainder of the chapter is concerned with a new idea, the concept of index.
This was introduced by Gauss in his Disquisitiones Arithmeticae.

Let n be any integer that admits a primitive root r . As we know, the first φ(n)
powers of r ,

r, r2, . . . , rφ(n)

are congruent modulo n, in some order, to those integers less than n and relatively
prime to it. Hence, if a is an arbitrary integer relatively prime to n, then a can be
expressed in the form

a ≡ rk (mod n)

for a suitable choice of k, where 1 ≤ k ≤ φ(n). This allows us to frame the following
definition.

Definition 8.3. Let r be a primitive root of n. If gcd(a, n) = 1, then the smallest
positive integer k such that a ≡ rk (mod n) is called the index of a relative to r.

Customarily, we denote the index of a relative to r by indr a or, if no confusion
is likely to occur, by ind a. Clearly, 1 ≤ indr a ≤ φ(n) and

r indr a ≡ a (mod n)

The notation indr a is meaningless unless gcd(a, n) = 1; in the future, this will be
tacitly assumed.

For example, the integer 2 is a primitive root of 5 and

21 ≡ 2 22 ≡ 4 23 ≡ 3 24 ≡ 1 (mod 5)

It follows that

ind2 1 = 4 ind2 2 = 1 ind2 3 = 3 ind2 4 = 2

Observe that indices of integers that are congruent modulo n are equal. Thus,
when setting up tables of values for ind a, it suffices to consider only those integers
a less than and relatively prime to the modulus n. To see this, let a ≡ b (mod n),
where a and b are taken to be relatively prime to n. Because r ind a ≡ a (mod n) and
r ind b ≡ b (mod n), we have

r ind a ≡ r ind b (mod n)
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Invoking Theorem 8.2, it may be concluded that ind a ≡ ind b (mod φ(n)). But,
because of the restrictions on the size of ind a and ind b, this is only possible when
ind a = ind b.

Indices obey rules that are reminiscent of those for logarithms, with the primitive
root playing a role analogous to that of the base for the logarithm.

Theorem 8.11. If n has a primitive root r and ind a denotes the index of a relative to
r , then the following properties hold:

(a) ind (ab) ≡ ind a + ind b (mod φ(n)).
(b) ind ak ≡ k ind a (mod φ(n)) for k > 0.
(c) ind 1 ≡ 0 (mod φ(n)), ind r ≡ 1 (mod φ(n)).

Proof. By the definition of index, r ind a ≡ a (mod n) and r ind b ≡ b (mod n). Multi-
plying these congruences together, we obtain

r ind a+ind b ≡ ab (mod n)

But r ind(ab) ≡ ab (mod n), so that

r ind a+ind b ≡ r ind(ab) (mod n)

It may very well happen that ind a + ind b exceeds φ(n). This presents no problem,
for Theorem 8.2 guarantees that the last equation holds if and only if the exponents are
congruent modulo φ(n); that is,

ind a + ind b ≡ ind (ab) (mod φ(n))

which is property (a).
The proof of property (b) proceeds along much the same lines. For we have

r ind ak ≡ ak (mod n), and by the laws of exponents, rk ind a = (r ind a)k ≡ ak (mod n);
hence,

r ind ak ≡ rk ind a (mod n)

As above, the implication is that ind ak ≡ k ind a (mod φ(n)). The two parts of property
(c) should be fairly apparent.

The theory of indices can be used to solve certain types of congruences. For
instance, consider the binomial congruence

xk ≡ a (mod n) k ≥ 2

where n is a positive integer having a primitive root and gcd(a, n) = 1. By
properties (a) and (b) of Theorem 8.11, this congruence is entirely equivalent to
the linear congruence

k ind x ≡ ind a (mod φ(n))

in the unknown ind x . If d = gcd(k, φ(n)) and d � | ind a, there is no solution. But, if
d | ind a, then there are exactly d values of ind x that will satisfy this last congruence;
hence, there are d incongruent solutions of xk ≡ a (mod n).

The case in which k = 2 and n = p, with p an odd prime, is particularly im-
portant. Because gcd(2, p − 1) = 2, the foregoing remarks imply that the quadratic
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congruence x2 ≡ a (mod p) has a solution if and only if 2 | ind a; when this con-
dition is fulfilled, there are exactly two solutions. If r is a primitive root of p, then
rk(1 ≤ k ≤ p − 1) runs modulo p through the integers 1, 2, . . . , p − 1, in some
order. The even powers of r produce the values of a for which the congruence
x2 ≡ a (mod p) is solvable; there are precisely (p − 1)/2 such choices for a.

Example 8.4. For an illustration of these ideas, let us solve the congruence

4x9 ≡ 7 (mod 13)

A table of indices can be constructed once a primitive root of 13 is fixed. Using the
primitive root 2, we simply calculate the powers 2, 22, . . . , 212 modulo 13. Here,

21 ≡ 2 25 ≡ 6 29 ≡ 5

22 ≡ 4 26 ≡ 12 210 ≡ 10

23 ≡ 8 27 ≡ 11 211 ≡ 7

24 ≡ 3 28 ≡ 9 212 ≡ 1

all congruences being modulo 13; hence, our table is

a 1 2 3 4 5 6 7 8 9 10 11 12

ind2 a 12 1 4 2 9 5 11 3 8 10 7 6

Taking indices, the congruence 4x9 ≡ 7 (mod 13) has a solution if and only if

ind2 4 + 9 ind2 x ≡ ind2 7 (mod 12)

The table gives the values ind2 4 = 2 and ind2 7 = 11, so that the last congruence
becomes 9 ind2 x ≡ 11 − 2 ≡ 9 (mod 12), which, in turn, is equivalent to having
ind2 x ≡ 1 (mod 4). It follows that

ind2 x = 1, 5, or 9

Consulting the table of indices once again, we find that the original congruence
4x9 ≡ 7 (mod 13) possesses the three solutions

x ≡ 2, 5, and 6 (mod 13)

If a different primitive root is chosen, we obviously obtain a different value for the
index of a; but, for purposes of solving the given congruence, it does not really matter
which index table is available. The φ(φ(13)) = 4 primitive roots of 13 are obtained
from the powers 2k(1 ≤ k ≤ 12), where

gcd(k, φ(13)) = gcd(k, 12) = 1

These are

21 ≡ 2 25 ≡ 6 27 ≡ 11 211 ≡ 7 (mod 13)

The index table for, say, the primitive root 6 is displayed below:

a 1 2 3 4 5 6 7 8 9 10 11 12

ind6 a 12 5 8 10 9 1 7 3 4 2 11 6
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Employing this table, the congruence 4x9 ≡ 7 (mod 13) is replaced by

ind6 4 + 9 ind6 x ≡ ind6 7 (mod 12)

or, rather,

9 ind6 x ≡ 7 − 10 ≡ −3 ≡ 9 (mod 12)

Thus, ind6 x = 1, 5, or 9, leading to the solutions

x ≡ 2, 5, and 6 (mod 13)

as before.

The following criterion for solvability is often useful.

Theorem 8.12. Let n be an integer possessing a primitive root and let gcd(a, n) = 1.
Then the congruence xk ≡ a (mod n) has a solution if and only if

aφ(n)/d ≡ 1 (mod n)

where d = gcd(k, φ(n)); if it has a solution, there are exactly d solutions modulo n.

Proof. Taking indices, the congruence aφ(n)/d ≡ 1 (mod n) is equivalent to

φ(n)

d
ind a ≡ 0 (mod φ(n))

which, in turn, holds if and only if d | ind a. But we have just seen that the latter is a
necessary and sufficient condition for the congruence xk ≡ a (mod n) to be solvable.

Corollary. Let p be a prime and gcd(a, p) = 1. Then the congruence xk ≡ a (mod p)
has a solution if and only if a(p−1)/d ≡ 1 (mod p), where d = gcd(k, p − 1).

Example 8.5. Let us consider the congruence

x3 ≡ 4 (mod 13)

In this setting, d = gcd(3, φ(13)) = gcd(3, 12) = 3, and therefore φ(13)/d = 4. Be-
cause 44 ≡ 9 �≡ 1 (mod 13), Theorem 8.12 asserts that the given congruence is not
solvable.

On the other hand, the same theorem guarantees that

x3 ≡ 5 (mod 13)

possesses a solution (in fact, there are three incongruent solutions modulo 13); for, in
this case, 54 ≡ 625 ≡ 1 (mod 13). These solutions can be found by means of the index
calculus as follows: the congruence x3 ≡ 5 (mod 13) is equivalent to

3 ind2 x ≡ 9 (mod 12)

which becomes

ind2 x ≡ 3 (mod 4)

This last congruence admits three incongruent solutions modulo 12, namely,

ind2 x = 3, 7, or 11
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The integers corresponding to these indices are, respectively, 8, 11, and 7, so that the
solutions of the congruence x3 ≡ 5 (mod 13) are

x ≡ 7, 8, and 11 (mod 13)

PROBLEMS 8.4

1. Find the index of 5 relative to each of the primitive roots of 13.
2. Using a table of indices for a primitive root of 11, solve the following congruences:

(a) 7x3 ≡ 3 (mod 11).
(b) 3x4 ≡ 5 (mod 11).
(c) x8 ≡ 10 (mod 11).

3. The following is a table of indices for the prime 17 relative to the primitive root 3:

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ind3 a 16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

With the aid of this table, solve the following congruences:
(a) x12 ≡ 13 (mod 17).
(b) 8x5 ≡ 10 (mod 17).
(c) 9x8 ≡ 8 (mod 17).
(d) 7x ≡ 7 (mod 17).

4. Find the remainder when 324 · 513 is divided by 17.
[Hint: Use the theory of indices.]

5. If r and r ′ are both primitive roots of the odd prime p, show that for gcd(a, p) = 1

indr ′ a ≡ (indr a)(indr ′ r ) (mod p − 1)

This corresponds to the rule for changing the base of logarithms.
6. (a) Construct a table of indices for the prime 17 with respect to the primitive root 5.

[Hint: By the previous problem, ind5 a ≡ 13 ind3 a (mod 16).]
(b) Solve the congruences in Problem 3, using the table in part (a).

7. If r is a primitive root of the odd prime p, verify that

indr (−1) = indr (p − 1) = 1

2
(p − 1)

8. (a) Determine the integers a(1 ≤ a ≤ 12) such that the congruence ax4 ≡ b (mod 13)
has a solution for b = 2, 5, and 6.

(b) Determine the integers a(1 ≤ a ≤ p − 1) such that the congruence x4 ≡ a (mod p)
has a solution for p = 7, 11, and 13.

9. Employ the corollary to Theorem 8.12 to establish that if p is an odd prime, then
(a) x2 ≡ −1 (mod p) is solvable if and only if p ≡ 1 (mod 4).
(b) x4 ≡ −1 (mod p) is solvable if and only if p ≡ 1 (mod 8).

10. Given the congruence x3 ≡ a (mod p), where p ≥ 5 is a prime and gcd(a, p) = 1, prove
the following:
(a) If p ≡ 1 (mod 6), then the congruence has either no solutions or three incongruent

solutions modulo p.
(b) If p ≡ 5 (mod 6), then the congruence has a unique solution modulo p.

11. Show that the congruence x3 ≡ 3 (mod 19) has no solutions, whereas x3 ≡ 11 (mod 19)
has three incongruent solutions.
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12. Determine whether the two congruences x5 ≡ 13 (mod 23) and x7 ≡ 15 (mod 29) are
solvable.

13. If p is a prime and gcd(k, p − 1) = 1, prove that the integers

1k, 2k, 3k, . . . , (p − 1)k

form a reduced set of residues modulo p.
14. Let r be a primitive root of the odd prime p, and let d = gcd(k, p − 1). Prove that the val-

ues of a for which the congruence xk ≡ a (mod p) is solvable are rd , r2d , . . . , r [(p−1)/d]d .
15. If r is a primitive root of the odd prime p, show that

indr (p − a) ≡ indr a + (p − 1)

2
(mod p − 1)

and, consequently, that only half of an index table need be calculated to complete the
table.

16. (a) Let r be a primitive root of the odd prime p. Establish that the exponential congruence

ax ≡ b (mod p)

has a solution if and only if d | indr b, where the integer d = gcd(indr a, p − 1); in
this case, there are d incongruent solutions modulo p − 1.

(b) Solve the exponential congruences 4x ≡ 13 (mod 17) and 5x ≡ 4 (mod 19).
17. For which values of b is the exponential congruence 9x ≡ b (mod 13) solvable?
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CHAPTER

9
THE QUADRATIC RECIPROCITY LAW

The moving power of mathematical invention is not reasoning but imagination.
A. DEMORGAN

9.1 EULER’S CRITERION

As the heading suggests, the present chapter has as its goal another major contribu-
tion of Gauss: the Quadratic Reciprocity Law. For those who consider the theory of
numbers “the Queen of Mathematics,” this is one of the jewels in her crown. The
intrinsic beauty of the Quadratic Reciprocity Law has long exerted a strange fasci-
nation for mathematicians. Since Gauss’s time, over a hundred proofs of it, all more
or less different, have been published (in fact, Gauss himself eventually devised
seven). Among the eminent mathematicians of the 19th century who contributed
their proofs appear the names of Cauchy, Jacobi, Dirichlet, Eisenstein, Kronecker,
and Dedekind.

Roughly speaking, the Quadratic Reciprocity Law deals with the solvability of
quadratic congruences. Therefore, it seems appropriate to begin by considering the
congruence

ax2 + bx + c ≡ 0 (mod p) (1)

where p is an odd prime and a �≡ 0 (mod p); that is, gcd(a, p) = 1. The supposition
that p is an odd prime implies that gcd(4a, p) = 1. Thus, the quadratic congruence
in Eq. (1) is equivalent to

4a(ax2 + bx + c) ≡ 0 (mod p)

169
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By using the identity

4a(ax2 + bx + c) = (2ax + b)2 − (b2 − 4ac)

the last-written quadratic congruence may be expressed as

(2ax + b)2 ≡ (b2 − 4ac) (mod p)

Now put y = 2ax + b and d = b2 − 4ac to get

y2 ≡ d (mod p) (2)

If x ≡ x0 (mod p) is a solution of the quadratic congruence in Eq. (1), then the integer
y ≡ 2ax0 + b (mod p) satisfies the quadratic congruence in Eq. (2). Conversely, if
y ≡ y0 (mod p) is a solution of the quadratic congruence in Eq. (2), then 2ax ≡
y0 − b (mod p) can be solved to obtain a solution to Eq. (1).

Thus, the problem of finding a solution to the quadratic congruence in Eq. (1)
is equivalent to that of finding a solution to a linear congruence and a quadratic
congruence of the form

x2 ≡ a (mod p) (3)

If p | a, then the quadratic congruence in Eq. (3) has x ≡ 0 (mod p) as its only
solution. To avoid trivialities, let us agree to assume hereafter that p � | a.

Granting this, whenever x2 ≡ a (mod p) admits a solution x = x0, there is also
a second solution x = p − x0. This second solution is not congruent to the first.
For x0 ≡ p − x0 (mod p) implies that 2x0 ≡ 0 (mod p), or x0 ≡ 0 (mod p), which
is impossible. By Lagrange’s theorem, these two solutions exhaust the incongruent
solutions of x2 ≡ a (mod p). In short: x2 ≡ a (mod p) has exactly two solutions or
no solutions.

A simple numerical example of what we have just said is provided by the
quadratic congruence

5x2 − 6x + 2 ≡ 0 (mod 13)

To obtain the solution, we replace this congruence by the simpler one

y2 ≡ 9 (mod 13)

with solutions y ≡ 3, 10 (mod 13). Next, solve the linear congruences

10x ≡ 9 (mod 13) 10x ≡ 16 (mod 13)

It is not difficult to see that x ≡ 10, 12 (mod 13) satisfy these equations and, by our
previous remarks, also the original quadratic congruence.

The major effort in this presentation is directed toward providing a test for the
existence of solutions of the quadratic congruence

x2 ≡ a (mod p) gcd(a, p) = 1 (4)

To put it differently, we wish to identify those integers a that are perfect squares
modulo p.
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Some additional terminology will help us to discuss this situation concisely.

Definition 9.1. Let p be an odd prime and gcd(a, p) = 1. If the quadratic congruence
x2 ≡ a (mod p) has a solution, then a is said to be a quadratic residue of p. Otherwise,
a is called a quadratic nonresidue of p.

The point to bear in mind is that if a ≡ b (mod p), then a is a quadratic residue
of p if and only if b is a quadratic residue of p. Thus, we only need to determine
the quadratic character of those positive integers less than p to ascertain that of any
integer.

Example 9.1. Consider the case of the prime p = 13. To find out how many of the
integers 1, 2, 3, . . . , 12 are quadratic residues of 13, we must know which of the
congruences

x2 ≡ a (mod 13)

are solvable when a runs through the set {1, 2, . . . , 12}. Modulo 13, the squares of the
integers 1, 2, 3, . . . , 12 are

12 ≡ 122 ≡ 1
22 ≡ 112 ≡ 4
32 ≡ 102 ≡ 9
42 ≡ 92 ≡ 3
52 ≡ 82 ≡ 12
62 ≡ 72 ≡ 10

Consequently, the quadratic residues of 13 are 1, 3, 4, 9, 10, 12, and the nonresidues
are 2, 5, 6, 7, 8, 11. Observe that the integers between 1 and 12 are divided equally
among the quadratic residues and nonresidues; this is typical of the general situation.

For p = 13 there are two pairs of consecutive quadratic residues, the pairs 3, 4
and 9, 10. It can be shown that for any odd prime p there are 1

4 (p − 4 − (−1)(p−1)/2)
consecutive pairs.

Euler devised a simple criterion for deciding whether an integer a is a quadratic
residue of a given prime p.

Theorem 9.1 Euler’s criterion. Let p be an odd prime and gcd(a, p) = 1. Then a
is a quadratic residue of p if and only if a(p−1)/2 ≡ 1 (mod p).

Proof. Suppose that a is a quadratic residue of p, so that x2 ≡ a (mod p) admits a
solution, call it x1. Because gcd(a, p) = 1, evidently gcd(x1, p) = 1. We may therefore
appeal to Fermat’s theorem to obtain

a(p−1)/2 ≡ (
x2

1

)(p−1)/2 ≡ x p−1
1 ≡ 1 (mod p)

For the opposite direction, assume that the congruence a(p−1)/2 ≡ 1 (mod p)
holds and let r be a primitive root of p. Then a ≡ rk (mod p) for some integer k, with
1 ≤ k ≤ p − 1. It follows that

rk(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p)
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By Theorem 8.1, the order of r (namely, p − 1) must divide the exponent k(p − 1)/2.
The implication is that k is an even integer, say k = 2 j . Hence,

(r j )2 = r2 j = rk ≡ a (mod p)

making the integer r j a solution of the congruence x2 ≡ a (mod p). This proves that
a is a quadratic residue of the prime p.

Now if p (as always) is an odd prime and gcd(a, p) = 1, then

(a(p−1)/2 − 1)(a(p−1)/2 + 1) = a p−1 − 1 ≡ 0 (mod p)

the last congruence being justified by Fermat’s theorem. Hence, either

a(p−1)/2 ≡ 1 (mod p) or a(p−1)/2 ≡ −1 (mod p)

but not both. For, if both congruences held simultaneously, then we would have
1 ≡ −1 (mod p), or equivalently, p | 2, which conflicts with our hypothesis. Because
a quadratic nonresidue of p does not satisfy a(p−1)/2 ≡ 1 (mod p), it must therefore
satisfy a(p−1)/2 ≡ −1 (mod p). This observation provides an alternate formulation
of Euler’s criterion: the integer a is a quadratic nonresidue of the prime p if and only
if a(p−1)/2 ≡ −1 (mod p).

Putting the various pieces together, we come up with the following corollary.

Corollary. Let p be an odd prime and gcd(a, p) = 1. Then a is a quadratic residue or
nonresidue of p according to whether

a(p−1)/2 ≡ 1 (mod p) or a(p−1)/2 ≡ −1 (mod p)

Example 9.2. In the case where p = 13, we find that

2(13−1)/2 = 26 = 64 ≡ 12 ≡ −1 (mod 13)

Thus, by virtue of the last corollary, the integer 2 is a quadratic nonresidue of 13.
Because

3(13−1)/2 = 36 = (27)2 ≡ 12 ≡ 1 (mod 13)

the same result indicates that 3 is a quadratic residue of 13 and so the congruence
x2 ≡ 3 (mod 13) is solvable; in fact, its two incongruent solutions are x ≡ 4 and
9 (mod 13).

There is an alternative proof of Euler’s criterion (due to Dirichlet) that is longer,
but perhaps more illuminating. The reasoning proceeds as follows. Let a be a
quadratic nonresidue of p and let c be any one of the integers 1, 2, . . . , p − 1.
By the theory of linear congruences, there exists a solution c′ of cx ≡ a (mod p),
with c′ also in the set {1, 2, . . . , p − 1}. Note that c′ �= c; otherwise we would have
c2 ≡ a (mod p), which contradicts what we assumed. Thus, the integers between 1
and p − 1 can be divided into (p − 1)/2 pairs, c, c′, where cc′ ≡ a (mod p). This
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leads to (p − 1)/2 congruences,

c1c′
1 ≡ a (mod p)

c2c′
2 ≡ a (mod p)

...
c(p−1)/2c′

(p−1)/2 ≡ a (mod p)

Multiplying them together and observing that the product

c1c′
1c2c′

2 · · · c(p−1)/2c′
(p−1)/2

is simply a rearrangement of 1 · 2 · 3 · · · (p − 1), we obtain

(p − 1)! ≡ a(p−1)/2 (mod p)

At this point, Wilson’s theorem enters the picture; for, (p − 1)! ≡ −1 (mod p), so
that

a(p−1)/2 ≡ −1 (mod p)

which is Euler’s criterion when a is a quadratic nonresidue of p.
We next examine the case in which a is a quadratic residue of p. In this setting

the congruence x2 ≡ a (mod p) admits two solutions x = x1 and x = p − x1, for
some x1 satisfying 1 ≤ x1 ≤ p − 1. If x1 and p − x1 are removed from the set
{1, 2, . . . , p − 1}, then the remaining p − 3 integers can be grouped into pairs c, c′
(where c �= c′) such that cc′ ≡ a (mod p). To these (p − 3)/2 congruences, add the
congruence

x1(p − x1) ≡ −x2
1 ≡ −a (mod p)

Upon taking the product of all the congruences involved, we arrive at the relation

(p − 1)! ≡ −a(p−1)/2 (mod p)

Wilson’s theorem plays its role once again to produce

a(p−1)/2 ≡ 1 (mod p)

Summing up, we have shown that a(p−1)/2 ≡ 1 (mod p) or a(p−1)/2 ≡ −1 (mod p)
according to whether a is a quadratic residue or nonresidue of p.

Euler’s criterion is not offered as a practical test for determining whether a given
integer is or is not a quadratic residue; the calculations involved are too cumbersome
unless the modulus is small. But as a crisp criterion, easily worked with for theoretic
purposes, it leaves little to be desired. A more effective method of computation is
embodied in the Quadratic Reciprocity Law, which we shall prove later in the chapter.

PROBLEMS 9.1

1. Solve the following quadratic congruences:
(a) x2 + 7x + 10 ≡ 0 (mod 11).
(b) 3x2 + 9x + 7 ≡ 0 (mod 13).
(c) 5x2 + 6x + 1 ≡ 0 (mod 23).
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2. Prove that the quadratic congruence 6x2 + 5x + 1 ≡ 0 (mod p) has a solution for every
prime p, even though the equation 6x2 + 5x + 1 = 0 has no solution in the integers.

3. (a) For an odd prime p, prove that the quadratic residues of p are congruent modulo p
to the integers

12, 22, 32, . . . ,

(
p − 1

2

)2

(b) Verify that the quadratic residues of 17 are 1, 2, 4, 8, 9, 13, 15, 16.
4. Show that 3 is a quadratic residue of 23, but a nonresidue of 31.
5. Given that a is a quadratic residue of the odd prime p, prove the following:

(a) a is not a primitive root of p.
(b) The integer p − a is a quadratic residue or nonresidue of p according as p ≡ 1

(mod 4) or p ≡ 3 (mod 4).
(c) If p ≡ 3 (mod 4), then x ≡ ±a(p+1)/4 (mod p) are the solutions of the congruence

x2 ≡ a (mod p).
6. Let p be an odd prime and gcd(a, p) = 1. Establish that the quadratic congruence

ax2 + bx + c ≡ 0 (mod p) is solvable if and only if b2 − 4ac is either zero or a quadratic
residue of p.

7. If p = 2k + 1 is prime, verify that every quadratic nonresidue of p is a primitive root
of p.
[Hint: Apply Euler’s criterion.]

8. Assume that the integer r is a primitive root of the prime p, where p ≡ 1 (mod 8).
(a) Show that the solutions of the quadratic congruence x2 ≡ 2 (mod p) are given by

x ≡ ±(r7(p−1)/8 + r (p−1)/8) (mod p)

[Hint: First confirm that r3(p−1)/2 ≡ −1 (mod p).]
(b) Use part (a) to find all solutions to the two congruences x2 ≡ 2 (mod 17) and x2 ≡ 2

(mod 41).
9. (a) If ab ≡ r (mod p), where r is a quadratic residue of the odd prime p, prove that a

and b are both quadratic residues of p or both nonresidues of p.
(b) If a and b are both quadratic residues of the odd prime p or both nonresidues of p,

show that the congruence ax2 ≡ b (mod p) has a solution.
[Hint: Multiply the given congruence by a′ where aa′ ≡ 1 (mod p).]

10. Let p be an odd prime and gcd(a, p) = gcd(b, p) = 1. Prove that either all three of the
quadratic congruences

x2 ≡ a (mod p) x2 ≡ b (mod p) x2 ≡ ab (mod p)

are solvable or exactly one of them admits a solution.
11. (a) Knowing that 2 is a primitive root of 19, find all the quadratic residues of 19.

[Hint: See the proof of Theorem 9.1.]
(b) Find the quadratic residues of 29 and 31.

12. If n > 2 and gcd(a, n) = 1, then a is called a quadratic residue of n whenever there exists
an integer x such that x2 ≡ a (mod n). Prove that if a is a quadratic residue of n > 2,
then aφ(n)/2 ≡ 1 (mod n).

13. Show that the result of the previous problem does not provide a sufficient condition for
the existence of a quadratic residue of n; in other words, find relatively prime integers
a and n, with aφ(n)/2 ≡ 1 (mod n), for which the congruence x2 ≡ a (mod n) is not
solvable.
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9.2 THE LEGENDRE SYMBOL AND ITS PROPERTIES

Euler’s studies on quadratic residues were further developed by the French math-
ematician Adrien Marie Legendre (1752–1833). Legendre’s memoir “Recherches
d’Analyse Indéterminée” (1785) contains an account of the Quadratic Reciprocity
Law and its many applications, a sketch of a theory of the representation of an
integer as the sum of three squares, and the statement of a theorem that was later
to become famous: Every arithmetic progression ax + b, where gcd(a, b) = 1,
contains an infinite number of primes. The topics covered in “Recherches” were
taken up in a more thorough and systematic fashion in his Essai sur la Théorie
des Nombres, which appeared in 1798. This represented the first “modern”
treatise devoted exclusively to number theory, its precursors being translations
or commentaries on Diophantus. Legendre’s Essai was subsequently expanded
into his Théorie des Nombres. The results of his later research papers, inspired
to a large extent by Gauss, were included in 1830 in a two-volume third edition
of the Théorie des Nombres. This remained, together with the Disquisitiones
Arithmeticae of Gauss, a standard work on the subject for many years. Al-
though Legendre made no great innovations in number theory, he raised fruitful
questions that provided subjects of investigation for the mathematicians of the
19th century.

Before leaving Legendre’s mathematical contributions, we should mention that
he is also known for his work on elliptic integrals and for his Éléments de Géométrie
(1794). In this last book, he attempted a pedagogical improvement of Euclid’s
Elements by rearranging and simplifying many of the proofs without lessening the
rigor of the ancient treatment. The result was so favorably received that it became one
of the most successful textbooks ever written, dominating instruction in geometry for
over a century through its numerous editions and translations. An English translation
was made in 1824 by the famous Scottish essayist and historian Thomas Carlyle,
who was in early life a teacher of mathematics; Carlyle’s translation ran through
33 American editions, the last not appearing until 1890. In fact, Legendre’s revision
was used at Yale University as late as 1885, when Euclid’s Elements was finally
abandoned as a text.

Our future efforts will be greatly simplified by the use of the symbol (a/p); this
notation was introduced by Legendre in his Essai and is called, naturally enough,
the Legendre symbol.

Definition 9.2. Let p be an odd prime and let gcd(a, p) = 1. The Legendre symbol
(a/p) is defined by

(a/p) =
{

1 if a is a quadratic residue of p

−1 if a is a quadratic nonresidue of p

For the want of better terminology, we shall refer to a as the numerator and p
as the denominator of the symbol (a/p). Another standard notation for the Legendre
symbol is ( a

p ), or (a | p).
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Example 9.3. Let us look at the prime p = 13, in particular. Using the Legendre
symbol, the results of an earlier example may be expressed as

(1/13) = (3/13) = (4/13) = (9/13) = (10/13) = (12/13) = 1

and

(2/13) = (5/13) = (6/13) = (7/13) = (8/13) = (11/13) = −1

Remark. For p | a, we have purposely left the symbol (a/p) undefined. Some authors
find it convenient to extend Legendre’s definition to this case by setting (a/p) = 0.
One advantage of this is that the number of solutions of x2 ≡ a (mod p) can then be
given by the simple formula 1 + (a/p).

The next theorem establishes certain elementary facts concerning the Legendre
symbol.

Theorem 9.2. Let p be an odd prime and let a and b be integers that are relatively
prime to p. Then the Legendre symbol has the following properties:

(a) If a ≡ b (mod p), then (a/p) = (b/p).
(b) (a2/p) = 1.
(c) (a/p) ≡ a(p−1)/2 (mod p).
(d) (ab/p) = (a/p)(b/p).
(e) (1/p) = 1 and (−1/p) = (−1)(p−1)/2.

Proof. If a ≡ b (mod p), then the two congruences x2 ≡ a (mod p) and x2 ≡ b
(mod p) have exactly the same solutions, if any at all. Thus, x2 ≡ a (mod p) and
x2 ≡ b (mod p) are both solvable, or neither one has a solution. This is reflected in the
statement (a/p) = (b/p).

Regarding property (b), observe that the integer a trivially satisfies the congruence
x2 ≡ a2 (mod p); hence, (a2/p) = 1. Property (c) is just the corollary to Theorem 9.1
rephrased in terms of the Legendre symbol. We use (c) to establish property (d):

(ab/p) ≡ (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2 ≡ (a/p)(b/p)(mod p)

Now the Legendre symbol assumes only the values 1 or −1. If (ab/p) �= (a/p)(b/p),
we would have 1 ≡ −1 (mod p) or 2 ≡ 0 (mod p); this cannot occur, because p > 2.
It follows that

(ab/p) = (a/p)(b/p)

Finally, we observe that the first equality in property (e) is a special case of property
(b), whereas the second one is obtained from property (c) upon setting a = −1. Because
the quantities (−1/p) and (−1)(p−1)/2 are either 1 or −1, the resulting congruence

(−1/p) ≡ (−1)(p−1)/2 (mod p)

implies that (−1/p) = (−1)(p−1)/2.

From parts (b) and (d) of Theorem 9.2, we may also abstract the relation

(f) (ab2/p) = (a/p)(b2/p) = (a/p)
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In other words, a square factor that is relatively prime to p can be deleted from the
numerator of the Legendre symbol without affecting its value.

Because (p − 1)/2 is even for a prime p of the form 4k + 1 and odd for p
of the form 4k + 3, the equation (−1/p) = (−1)(p−1)/2 permits us to add a small
supplemental corollary to Theorem 9.2.

Corollary. If p is an odd prime, then

(−1/p) =
{

1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)

This corollary may be viewed as asserting that the quadratic congruence x2 ≡
−1 (mod p) has a solution for an odd prime p if and only if p is of the form 4k + 1.
The result is not new, of course; we have merely provided the reader with a different
path to Theorem 5.5.

Example 9.4. Let us ascertain whether the congruence x2 ≡ −46 (mod 17) is solvable.
This can be done by evaluating the Legendre symbol (−46/17). We first appeal to
properties (d) and (e) of Theorem 9.2 to write

(−46/17) = (−1/17)(46/17) = (46/17)

Because 46 ≡ 12 (mod 17), it follows that

(46/17) = (12/17)

Now property (f ) gives

(12/17) = (3 · 22/17) = (3/17)

But

(3/17) ≡ 3(17−1)/2 ≡ 38 ≡ (81)2 ≡ (−4)2 ≡ −1 (mod 17)

where we make appropriate use of property (c) of Theorem 9.2; hence, (3/17) = −1.
Inasmuch as (−46/17) = −1, the quadratic congruence x2 ≡ −46 (mod 17) admits
no solution.

The corollary to Theorem 9.2 lends itself to an application concerning the dis-
tribution of primes.

Theorem 9.3. There are infinitely many primes of the form 4k + 1.

Proof. Suppose that there are finitely many such primes; let us call them p1, p2, . . . , pn

and consider the integer

N = (2p1 p2 · · · pn)2 + 1

Clearly N is odd, so that there exists some odd prime p with p | N . To put it another
way,

(2p1 p2 · · · pn)2 ≡ −1 (mod p)
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or, if we prefer to phrase this in terms of the Legendre symbol, (−1/p) = 1. But the
relation (−1/p) = 1 holds only if p is of the form 4k + 1. Hence, p is one of the primes
pi , implying that pi divides N − (2p1 p2 · · · pn)2, or pi | 1, which is a contradiction.
The conclusion: There must exist infinitely many primes of the form 4k + 1.

We dig deeper into the properties of quadratic residues with Theorem 9.4.

Theorem 9.4. If p is an odd prime, then

p−1∑
a=1

(a/p) = 0

Hence, there are precisely (p − 1)/2 quadratic residues and (p − 1)/2 quadratic non-
residues of p.

Proof. Let r be a primitive root of p. We know that, modulo p, the powers r ,
r2, . . . , r p−1 are just a permutation of the integers 1, 2, . . . , p − 1. Thus, for any
a lying between 1 and p − 1, inclusive, there exists a unique positive integer k
(1 ≤ k ≤ p − 1), such that a ≡ rk (mod p). By appropriate use of Euler’s criterion,
we have

(a/p) = (rk/p) ≡ (rk)(p−1)/2 = (r (p−1)/2)k ≡ (−1)k (mod p) (1)

where, because r is a primitive root of p, r (p−1)/2 ≡ −1 (mod p). But (a/p) and (−1)k

are equal to either 1 or −1, so that equality holds in Eq. (1). Now add up the Legendre
symbols in question to obtain

p−1∑
a=1

(a/p) =
p−1∑
k=1

(−1)k = 0

which is the desired conclusion.

The proof of Theorem 9.4 serves to bring out the following point, which we
record as a corollary.

Corollary. The quadratic residues of an odd prime p are congruent modulo p to the
even powers of a primitive root r of p; the quadratic nonresidues are congruent to the
odd powers of r .

For an illustration of the idea just introduced, we again fall back on the prime
p = 13. Because 2 is a primitive root of 13, the quadratic residues of 13 are given
by the even powers of 2, namely,

22 ≡ 4 28 ≡ 9

24 ≡ 3 210 ≡ 10

26 ≡ 12 212 ≡ 1
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all congruences being modulo 13. Similarly, the nonresidues occur as the odd powers
of 2:

21 ≡ 2 27 ≡ 11

23 ≡ 8 29 ≡ 5

25 ≡ 6 211 ≡ 7

Most proofs of the Quadratic Reciprocity Law, and ours as well, rest ultimately
upon what is known as Gauss’s lemma. Although this lemma gives the quadratic
character of an integer, it is more useful from a theoretic point of view than as a
computational device. We state and prove it below.

Theorem 9.5 Gauss’s lemma. Let p be an odd prime and let gcd(a, p) = 1. If n
denotes the number of integers in the set

S =
{

a, 2a, 3a, . . . ,

(
p − 1

2

)
a

}

whose remainders upon division by p exceed p/2, then

(a/p) = (−1)n

Proof. Because gcd(a, p) = 1, none of the (p − 1)/2 integers in S is congruent to zero
and no two are congruent to each other modulo p. Let r1, . . . , rm be those remainders
upon division by p such that 0 < ri < p/2, and let s1, . . . , sn be those remainders such
that p > si > p/2. Then m + n = (p − 1)/2, and the integers

r1, . . . , rm p − s1, . . . , p − sn

are all positive and less than p/2.
To prove that these integers are all distinct, it suffices to show that no p − si is

equal to any r j . Assume to the contrary that

p − si = r j

for some choice of i and j . Then there exist integers u and v , with 1 ≤ u, v ≤ (p − 1)/2,
satisfying si ≡ ua (mod p) and r j ≡ va (mod p). Hence,

(u + v)a ≡ si + r j = p ≡ 0 (mod p)

which says that u + v ≡ 0 (mod p). But the latter congruence cannot take place,
because 1 < u + v ≤ p − 1.

The point we wish to bring out is that the (p − 1)/2 numbers

r1, . . . , rm p − s1, . . . , p − sn

are simply the integers 1, 2, . . . , (p − 1)/2, not necessarily in order of appearance.
Thus, their product is [(p − 1)/2]!:(

p − 1

2

)
! = r1 · · · rm(p − s1) · · · (p − sn)

≡ r1 · · · rm(−s1) · · · (−sn) (mod p)

≡ (−1)nr1 · · · rms1 · · · sn (mod p)
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But we know that r1, . . . , rm , s1, . . . , sn are congruent modulo p to a, 2a, . . . ,

[(p − 1)/2]a, in some order, so that(
p − 1

2

)
! ≡ (−1)na · 2a · · ·

(
p − 1

2

)
a (mod p)

≡ (−1)na(p−1)/2

(
p − 1

2

)
! (mod p)

Because [(p − 1)/2]! is relatively prime to p, it may be canceled from both sides of
this congruence to give

1 ≡ (−1)na(p−1)/2 (mod p)

or, upon multiplying by (−1)n ,

a(p−1)/2 ≡ (−1)n (mod p)

Use of Euler’s criterion now completes the argument:

(a/p) ≡ a(p−1)/2 ≡ (−1)n (mod p)

which implies that

(a/p) = (−1)n

By way of illustration, let p = 13 and a = 5. Then (p − 1)/2 = 6, so that

S = {5, 10, 15, 20, 25, 30}
Modulo 13, the members of S are the same as the integers

5, 10, 2, 7, 12, 4

Three of these are greater than 13/2; hence, n = 3, and Theorem 9.5 says that

(5/13) = (−1)3 = −1

Gauss’s lemma allows us to proceed to a variety of interesting results. For one
thing, it provides a means for determining which primes have 2 as a quadratic residue.

Theorem 9.6. If p is an odd prime, then

(2/p) =
{

1 if p ≡ 1 (mod 8) or p ≡ 7 (mod 8)

−1 if p ≡ 3 (mod 8) or p ≡ 5 (mod 8)

Proof. According to Gauss’s lemma, (2/p) = (−1)n , where n is the number of integers
in the set

S =
{

1 · 2, 2 · 2, 3 · 2, . . . ,

(
p − 1

2

)
· 2

}

which, upon division by p, have remainders greater than p/2. The members of S are
all less than p, so that it suffices to count the number that exceed p/2. For 1 ≤ k ≤
(p − 1)/2, we have 2k < p/2 if and only if k < p/4. If [ ] denotes the greatest integer
function, then there are [p/4] integers in S less than p/2; hence,

n = p − 1

2
−

[ p

4

]
is the number of integers that are greater than p/2.
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Now we have four possibilities, for any odd prime has one of the forms 8k + 1,
8k + 3, 8k + 5, or 8k + 7. A simple calculation shows that

if p = 8k + 1, then n = 4k −
[

2k + 1

4

]
= 4k − 2k = 2k

if p = 8k + 3, then n = 4k + 1 −
[

2k + 3

4

]
= 4k + 1 − 2k = 2k + 1

if p = 8k + 5, then n = 4k + 2 −
[

2k + 1 + 1

4

]

= 4k + 2 − (2k + 1) = 2k + 1

if p = 8k + 7, then n = 4k + 3 −
[

2k + 1 + 3

4

]

= 4k + 3 − (2k + 1) = 2k + 2

Thus, when p is of the form 8k + 1 or 8k + 7, n is even and (2/p) = 1; on the
other hand, when p assumes the form 8k + 3 or 8k + 5, n is odd and (2/p) = −1.

Notice that if the prime p is of the form 8k ± 1 (equivalently, p ≡ 1 (mod 8) or
p ≡ 7 (mod 8)), then

p2 − 1

8
= (8k ± 1)2 − 1

8
= 64k2 ± 16k

8
= 8k2 ± 2k

which is an even integer; in this situation, (−1)(p2−1)/8 = 1 = (2/p). On the
other hand, if p is of the form 8k ± 3 (equivalently, p ≡ 3 (mod 8) or p ≡ 5
(mod 8)), then

p2 − 1

8
= (8k ± 3)2 − 1

8
= 64k2 ± 48k + 8

8
= 8k2 ± 6k + 1

which is odd; here, we have (−1)(p2−1)/8 = −1 = (2/p). These observations are
incorporated in the statement of the following corollary to Theorem 9.6.

Corollary. If p is an odd prime, then

(2/p) = (−1)(p2−1)/8

It is time for another look at primitive roots. As we have remarked, there is no
general technique for obtaining a primitive root of an odd prime p; the reader might,
however, find the next theorem useful on occasion.

Theorem 9.7. If p and 2p + 1 are both odd primes, then the integer (−1)(p−1)/22 is a
primitive root of 2p + 1.

Proof. For ease of discussion, let us put q = 2p + 1. We distinguish two cases: p ≡
1 (mod 4) and p ≡ 3 (mod 4).
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If p ≡ 1 (mod 4), then (−1)(p−1)/22 = 2. Because φ(q) = q − 1 = 2p, the order of
2 modulo q is one of the numbers 1, 2, p, or 2p. Taking note of property (c) of
Theorem 9.2, we have

(2/q) ≡ 2(q−1)/2 = 2p (mod q)

But, in the present setting, q ≡ 3 (mod 8); whence, the Legendre symbol (2/q) = −1.
It follows that 2p ≡ −1 (mod q), and therefore 2 cannot have order p modulo q .
The order of 2 being neither 1, 2, (22 ≡ 1 (mod q) implies that q | 3, which is an
impossibility) nor p, we are forced to conclude that the order of 2 modulo q is 2p.
This makes 2 a primitive root of q .

We now deal with the case p ≡ 3 (mod 4). This time, (−1)(p−1)/22 = −2 and

(−2)p ≡ (−2/q) = (−1/q)(2/q) (mod q)

Because q ≡ 7 (mod 8), the corollary to Theorem 9.2 asserts that (−1/q) = −1,
whereas once again we have (2/q) = 1. This leads to the congruence (−2)p ≡ −1
(mod q). From here on, the argument duplicates that of the last paragraph. Without
analyzing further, we announce the decision: −2 is a primitive root of the prime q.

Theorem 9.7 indicates, for example, that the primes 11, 59, 107, and 179 have
2 as a primitive root. Likewise, the integer −2 serves as a primitive root for 7, 23,
47, and 167.

Before retiring from the field, we should mention another result of the same
character: if both p and 4p + 1 are primes, then 2 is a primitive root of 4p + 1.
Thus, to the list of prime numbers having 2 for a primitive root, we could add, say,
13, 29, 53, and 173.

An odd prime p such that 2p + 1 is also a prime is called a Germain prime, after
the French number theorist Sophie Germain (1776–1831). An unresolved problem
is to determine whether there exist infinitely many Germain primes. The largest such
known today is p = 48047305725 · 2172403 − 1, which has 51910 digits.

There is an attractive proof of the infinitude of primes of the form 8k − 1 that
can be based on Theorem 9.6.

Theorem 9.8. There are infinitely many primes of the form 8k − 1.

Proof. As usual, suppose that there are only a finite number of such primes. Let these
be p1, p2, . . . , pn and consider the integer

N = (4p1 p2 · · · pn)2 − 2

There exists at least one odd prime divisor p of N , so that

(4p1 p2 · · · pn)2 ≡ 2 (mod p)

or (2/p) = 1. In view of Theorem 9.6, p ≡ ±1 (mod 8). If all the odd prime divisors
of N were of the form 8k + 1, then N would be of the form 8a + 1; this is clearly
impossible, because N is of the form 16a − 2. Thus, N must have a prime divisor q of
the form 8k − 1. But q | N , and q | (4p1 p2 · · · pn)2 leads to the contradiction that q | 2.

The next result, which allows us to effect the passage from Gauss’s lemma to
the Quadratic Reciprocity Law (Theorem 9.9), has some independent interest.
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Lemma. If p is an odd prime and a an odd integer, with gcd(a, p) = 1, then

(a/p) = (−1)
∑(p−1)/2

k=1 [ka/p]

Proof. We shall employ the same notation as in the proof of Gauss’s lemma. Consider
the set of integers

S =
{

a, 2a, . . . ,

(
p − 1

2

)
a

}

Divide each of these multiples of a by p to obtain

ka = qk p + tk 1 ≤ tk ≤ p − 1

Then ka/p = qk + tk/p, so that [ka/p] = qk . Thus, for 1 ≤ k ≤ (p − 1)/2, we may
write ka in the form

ka =
[

ka

p

]
p + tk (1)

If the remainder tk < p/2, then it is one of the integers r1, . . . , rm ; on the other hand,
if tk > p/2, then it is one of the integers s1, . . . , sn .

Taking the sum of the (p − 1)/2 equations in Eq. (1), we get the relation

(p−1)/2∑
k=1

ka =
(p−1)/2∑

k=1

[
ka

p

]
p +

m∑
k=1

rk +
n∑

k=1

sk (2)

It was learned in proving Gauss’s lemma that the (p − 1)/2 numbers

r1, . . . , rm p − s1, . . . , p − sn

are just a rearrangement of the integers 1, 2, . . . , (p − 1)/2. Hence

(p−1)/2∑
k=1

k =
m∑

k=1

rk +
n∑

k=1

(p − sk) = pn +
m∑

k=1

rk −
n∑

k=1

sk (3)

Subtracting Eq. (3) from Eq. (2) gives

(a − 1)
(p−1)/2∑

k=1

k = p

(
(p−1)/2∑

k=1

[
ka

p

]
− n

)
+ 2

n∑
k=1

sk (4)

Let us use the fact that p ≡ a ≡ 1 (mod 2) and translate this last equation into a
congruence modulo 2:

0 ·
(p−1)/2∑

k=1

k ≡ 1 ·
(

(p−1)/2∑
k=1

[
ka

p

]
− n

)
(mod 2)

or

n ≡
(p−1)/2∑

k=1

[
ka

p

]
(mod 2)

The rest follows from Gauss’s lemma; for,

(a/p) = (−1)n = (−1)
∑(p−1)/2

k=1 [ka/p]

as we wished to show.
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For an example of this last result, again consider p = 13 and a = 5. Because
(p − 1)/2 = 6, it is necessary to calculate [ka/p] for k = 1, . . . , 6:

[5/13] = [10/13] = 0

[15/13] = [20/13] = [25/13] = 1

[30/13] = 2

By the lemma just proven, we have

(5/13) = (−1)1+1+1+2 = (−1)5 = −1

confirming what was earlier seen.

PROBLEMS 9.2

1. Find the value of the following Legendre symbols:
(a) (19/23).
(b) (−23/59).
(c) (20/31).
(d) (18/43).
(e) (−72/131).

2. Use Gauss’s lemma to compute each of the Legendre symbols below (that is, in each
case obtain the integer n for which (a/p) = (−1)n):
(a) (8/11).
(b) (7/13).
(c) (5/19).
(d) (11/23).
(e) (6/31).

3. For an odd prime p, prove that there are (p − 1)/2 − φ(p − 1) quadratic nonresidues of
p that are not primitive roots of p.

4. (a) Let p be an odd prime. Show that the Diophantine equation

x2 + py + a = 0 gcd(a, p) = 1

has an integral solution if and only if (−a/p) = 1.
(b) Determine whether x2 + 7y − 2 = 0 has a solution in the integers.

5. Prove that 2 is not a primitive root of any prime of the form p = 3 · 2n + 1, except when
p = 13.
[Hint: Use Theorem 9.6.]

6. (a) If p is an odd prime and gcd(ab, p) = 1, prove that at least one of a, b, or ab is a
quadratic residue of p.

(b) Given a prime p, show that, for some choice of n > 0, p divides

(n2 − 2)(n2 − 3)(n2 − 6)

7. If p is an odd prime, show that

p−2∑
a=1

(a(a + 1)/p) = −1

[Hint: If a′ is defined by aa′ ≡ 1 (mod p), then (a(a + 1)/p) = ((1 + a′)/p). Note that
1 + a′ runs through a complete set of residues modulo p, except for the integer 1.]
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8. Prove the statements below:
(a) If p and q = 2p + 1 are both odd primes, then −4 is a primitive root of q.
(b) If p ≡ 1 (mod 4) is a prime, then −4 and (p − 1)/4 are both quadratic residues of p.

9. For a prime p ≡ 7 (mod 8), show that p | 2(p−1)/2 − 1.
[Hint: Use Theorem 9.6.]

10. Use Problem 9 to confirm that the numbers 2n − 1 are composite for n = 11, 23, 83,
131, 179, 183, 239, 251.

11. Given that p and q = 4p + 1 are both primes, prove the following:
(a) Any quadratic nonresidue of q is either a primitive root of q or has order 4 modulo q.

[Hint: If a is a quadratic nonresidue of q, then −1 = (a/q) ≡ a2p (mod q); hence,
a has order 1, 2, 4, p, 2p, or 4p modulo q .]

(b) The integer 2 is a primitive root of q; in particular, 2 is a primitive root of the primes
13, 29, 53, and 173.

12. If r is a primitive root of the odd prime p, prove that the product of the quadratic residues
of p is congruent modulo p to r (p2−1)/4 and the product of the nonresidues of p is
congruent modulo p to r (p−1)2/4.
[Hint: Apply the corollary to Theorem 9.4.]

13. Establish that the product of the quadratic residues of the odd prime p is congruent
modulo p to 1 or −1 according as p ≡ 3 (mod 4) or p ≡ 1 (mod 4).
[Hint: Use Problem 12 and the fact that r (p−1)/2 ≡ −1 (mod p). Or, Problem 3(a) of
Section 9.1 and the proof of Theorem 5.5.]

14. (a) If the prime p > 3, show that p divides the sum of its quadratic residues.
(b) If the prime p > 5, show that p divides the sum of the squares of its quadratic

nonresidues.
15. Prove that for any prime p > 5 there exist integers 1 ≤ a, b ≤ p − 1 for which

(a/p) = (a + 1/p) = 1 and (b/p) = (b + 1/p) = −1

that is, there are consecutive quadratic residues of p and consecutive nonresidues.
16. (a) Let p be an odd prime and gcd(a, p) = gcd(k, p) = 1. Show that if the equation

x2 − ay2 = kp admits a solution, then (a/p) = 1; for example, (2/7) = 1, because
62 − 2 · 22 = 4 · 7.
[Hint: If x0, y0 satisfy the given equation, then (x0 y p−2

0 )2 ≡ a (mod p).]
(b) By considering the equation x2 + 5y2 = 7, demonstrate that the converse of the result

in part (a) need not hold.
(c) Show that, for any prime p ≡ ±3 (mod 8), the equation x2 − 2y2 = p has no solution.

17. Prove that the odd prime divisors p of the integers 9n + 1 are of the form p ≡ 1 (mod 4).
18. For a prime p ≡ 1 (mod 4), verify that the sum of the quadratic residues of p is equal to

p(p − 1)/4.
[Hint: If a1, . . . , ar are the quadratic residues of p less than p/2, then p − a1, . . . , p − ar

are those greater than p/2.]

9.3 QUADRATIC RECIPROCITY

Let p and q be distinct odd primes, so that both of the Legendre symbols (p/q)
and (q/p) are defined. It is natural to enquire whether the value of (p/q) can be
determined if that of (q/p) is known. To put the question more generally, is there any
connection at all between the values of these two symbols? The basic relationship was
conjectured experimentally by Euler in 1783 and imperfectly proved by Legendre
two years thereafter. Using his symbol, Legendre stated this relationship in the
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elegant form that has since become known as the Quadratic Reciprocity Law:

(p/q)(q/p) = (−1)
p−1

2
q−1

2

Legendre went amiss in assuming a result that is as difficult to prove as the law
itself, namely, that for any odd prime p ≡ 1 (mod 8), there exists another prime
q ≡ 3 (mod 4) for which p is a quadratic residue. Undaunted, he attempted another
proof in his Essai sur la Théorie des Nombres (1798); this one also contained a
gap, because Legendre took for granted that there are an infinite number of primes
in certain arithmetical progressions (a fact eventually proved by Dirichlet in 1837,
using in the process very subtle arguments from complex variable theory).

At the age of 18, Gauss (in 1795), apparently unaware of the work of either
Euler or Legendre, rediscovered this reciprocity law and, after a year’s unremit-
ting labor, obtained the first complete proof. “It tortured me,” says Gauss, “for the
whole year and eluded my most strenuous efforts before, finally, I got the proof
explained in the fourth section of the Disquisitiones Arithmeticae.” In the Disqui-
sitiones Arithmeticae—which was published in 1801, although finished in 1798—
Gauss attributed the Quadratic Reciprocity Law to himself, taking the view that a
theorem belongs to the one who gives the first rigorous demonstration. The indig-
nant Legendre was led to complain: “This excessive impudence is unbelievable in
a man who has sufficient personal merit not to have the need of appropriating the
discoveries of others.” All discussion of priority between the two was futile; because
each clung to the correctness of his position, neither took heed of the other. Gauss
went on to publish five different demonstrations of what he called “the gem of higher
arithmetic,” and another was found among his papers. The version presented below, a
variant of one of Gauss’s own arguments, is due to his student, Ferdinand Eisenstein
(1823–1852). The proof is challenging (and it would perhaps be unreasonable to
expect an easy proof), but the underlying idea is simple enough.

Theorem 9.9 Quadratic Reciprocity Law. If p and q are distinct odd primes, then

(p/q)(q/p) = (−1)
p−1

2
q−1

2

Proof. Consider the rectangle in the xy coordinate plane whose vertices are (0, 0),
(p/2, 0), (0, q/2), and (p/2, q/2). Let R denote the region within this rectangle, not
including any of the bounding lines. The general plan of attack is to count the number
of lattice points (that is, the points whose coordinates are integers) inside R in two
different ways. Because p and q are both odd, the lattice points in R consist of all
points (n, m), where 1 ≤ n ≤ (p − 1)/2 and 1 ≤ m ≤ (q − 1)/2; clearly, the number
of such points is

p − 1

2
· q − 1

2
Now the diagonal D from (0, 0) to (p/2, q/2) has the equation y = (q/p)x , or

equivalently, py = qx . Because gcd(p, q) = 1, none of the lattice points inside R will
lie on D. For p must divide the x coordinate of any lattice point on the line py = qx , and
q must divide its y coordinate; there are no such points in R. Suppose that T1 denotes
the portion of R that is below the diagonal D, and T2 the portion above. By what we
have just seen, it suffices to count the lattice points inside each of these triangles.
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The number of integers in the interval 0 < y < kq/p is equal to [kq/p]. Thus,
for 1 ≤ k ≤ (p − 1)/2, there are precisely [kq/p] lattice points in T1 directly above
the point (k, 0) and below D; in other words, lying on the vertical line segment from
(k, 0) to (k, kq/p). It follows that the total number of lattice points contained in T1 is

(p−1)/2∑
k=1

[
kq

p

]

(0, 0) (k, 0) (p/2, 0)

(k, kq/p)

( p/2, q/2)
(0, q/2)

(0, f )
T2

T1

D

A similar calculation, with the roles of p and q interchanged, shows that the number
of lattice points within T2 is

(q−1)/2∑
j=1

[
j p

q

]

This accounts for all of the lattice points inside R, so that

p − 1

2
· q − 1

2
=

(p−1)/2∑
k=1

[
kq

p

]
+

(q−1)/2∑
j=1

[
j p

q

]

The time has come for Gauss’s lemma to do its duty:

(p/q)(q/p) = (−1)
∑(q−1)/2

j=1 [ j p/q] · (−1)
∑(p−1)/2

k=1 [kq/p]

= (−1)
∑(q−1)/2

j=1 [ j p/q]+∑(p−1)/2
k=1 [kq/p]

= (−1)
p−1

2
q−1

2

The proof of the Quadratic Reciprocity Law is now complete.

An immediate consequence of this is Corollary 1.

Corollary 1. If p and q are distinct odd primes, then

(p/q)(q/p) =
{

1 if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)

−1 if p ≡ q ≡ 3 (mod 4)
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Proof. The number (p − 1)/2 · (q − 1)/2 is even if and only if at least one of the
integers p and q is of the form 4k + 1; if both are of the form 4k + 3, then the product
(p − 1)/2 · (q − 1)/2 is odd.

Multiplying each side of the equation of the Quadratic Reciprocity Law by (q/p)
and using the fact that (q/p)2 = 1, we could also formulate this as Corollary 2.

Corollary 2. If p and q are distinct odd primes, then

(p/q) =
{

(q/p) if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)

−(q/p) if p ≡ q ≡ 3 (mod 4)

Let us see what this last series of results accomplishes. Take p to be an odd
prime and a �= ±1 to be an integer not divisible by p. Suppose further that a has the
factorization

a = ±2k0 pk1
1 pk2

2 · · · pkr
r

where the pi are distinct odd primes. Because the Legendre symbol is multiplicative,

(a/p) = (±1/p)(2/p)k0 (p1/p)k1 · · · (pr/p)kr

To evaluate (a/p), we have only to calculate each of the symbols (−1/p), (2/p),
and (pi/p). The values of (−1/p) and (2/p) were discussed earlier, so that the one
stumbling block is (pi/p), where pi and p are distinct odd primes; this is where the
Quadratic Reciprocity Law enters. For Corollary 2 allows us to replace (pi/p) by a
new Legendre symbol having a smaller denominator. Through continued inversion
and division, the computation can be reduced to that of the known quantities

(−1/q) (1/q) (2/q)

This is all somewhat vague, of course, so let us look at a concrete example.

Example 9.5. Consider the Legendre symbol (29/53). Because both 29 ≡ 1 (mod 4)
and 53 ≡ 1 (mod 4), we see that

(29/53) = (53/29) = (24/29) = (2/29)(3/29)(4/29) = (2/29)(3/29)

With reference to Theorem 9.6, (2/29) = −1, while inverting again,

(3/29) = (29/3) = (2/3) = −1

where we used the congruence 29 ≡ 2 (mod 3). The net effect is that

(29/53) = (2/29)(3/29) = (−1)(−1) = 1

The Quadratic Reciprocity Law provides a very satisfactory answer to the prob-
lem of finding odd primes p �= 3 for which 3 is a quadratic residue. Because 3 ≡ 3
(mod 4), Corollary 2 of Theorem 9.9 implies that

(3/p) =
{

(p/3) if p ≡ 1 (mod 4)

−(p/3) if p ≡ 3 (mod 4)
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Now p ≡ 1 (mod 3) or p ≡ 2 (mod 3). By Theorems 9.2 and 9.6,

(p/3) =
{

1 if p ≡ 1 (mod 3)

−1 if p ≡ 2 (mod 3)

the implication of which is that (3/p) = 1 if and only if

p ≡ 1 (mod 4) and p ≡ 1 (mod 3) (1)

or

p ≡ 3 (mod 4) and p ≡ 2 (mod 3) (2)

The restrictions in the congruencies in Eq. (1) are equivalent to requiring that p ≡
1 (mod 12) whereas those congruencies in Eq. (2) are equivalent to p ≡ 11 ≡ −1
(mod 12). The upshot of all this is Theorem 9.10.

Theorem 9.10. If p �= 3 is an odd prime, then

(3/p) =
{

1 if p ≡ ±1 (mod 12)

−1 if p ≡ ±5 (mod 12)

Example 9.6. For an example of the solution of a quadratic congruence with a com-
posite modulus, consider

x2 ≡ 196 (mod 1357)

Because 1357 = 23 · 59, the given congruence is solvable if and only if both

x2 ≡ 196 (mod 23) and x2 ≡ 196 (mod 59)

are solvable. Our procedure is to find the values of the Legendre symbols (196/23) and
(196/59).

The evaluation of (196/23) requires the use of Theorem 9.10:

(196/23) = (12/23) = (3/23) = 1

Thus, the congruence x2 ≡ 196 (mod 23) admits a solution. As regards the symbol
(196/59), the Quadratic Reciprocity Law enables us to write

(196/59) = (19/59) = −(59/19) = −(2/19) = −(−1) = 1

Therefore, it is possible to solve x2 ≡ 196 (mod 59) and, in consequence, the congru-
ence x2 ≡ 196 (mod 1357) as well.

To arrive at a solution, notice that the congruence x2 ≡ 196 ≡ 12 (mod 23) is
satisfied by x ≡ 9, 14 (mod 23), and x2 ≡ 196 ≡ 19 (mod 59) has solutions x ≡ 14, 45
(mod 59). We may now use the Chinese Remainder Theorem to obtain the simultaneous
solutions of the four systems:

x ≡ 14 (mod 23) and x ≡ 14 (mod 59)

x ≡ 14 (mod 23) and x ≡ 45 (mod 59)

x ≡ 9 (mod 23) and x ≡ 14 (mod 59)

x ≡ 9 (mod 23) and x ≡ 45 (mod 59)

The resulting values x ≡ 14, 635, 722, 1343 (mod 1357) are the desired solutions of
the original congruence x2 ≡ 196 (mod 1357).
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Example 9.7. Let us turn to a quite different application of these ideas. At an earlier
stage, it was observed that if Fn = 22n + 1, n > 1, is a prime, then 2 is not a primitive
root of Fn . We now possess the means to show that the integer 3 serves as a primitive
root of any prime of this type.

As a first step in this direction, note that any Fn is of the form 12k + 5. A sim-
ple induction argument confirms that 4m ≡ 4 (mod 12) for m = 1, 2, . . . ; hence, we
must have

Fn = 22n + 1 = 22m + 1 = 4m + 1 ≡ 5 (mod 12)

If Fn happens to be prime, then Theorem 9.10 permits the conclusion

(3/Fn) = −1

or, using Euler’s criterion,

3(Fn−1)/2 ≡ −1 (mod Fn)

Switching to the phi-function, the last congruence says that

3φ(Fn )/2 ≡ −1 (mod Fn)

From this, it may be inferred that 3 has order φ(Fn) modulo Fn , and therefore 3 is a
primitive root of Fn . For if the order of 3 were a proper divisor of

φ(Fn) = Fn − 1 = 22n

then it would also divide φ(Fn)/2, leading to the contradiction

3φ(Fn )/2 ≡ 1 (mod Fn)

PROBLEMS 9.3

1. Evaluate the following Legendre symbols:
(a) (71/73).
(b) (−219/383).
(c) (461/773).
(d) (1234/4567).
(e) (3658/12703).
[Hint: 3658 = 2 · 31 · 59.]

2. Prove that 3 is a quadratic nonresidue of all primes of the form 22n + 1 and also all
primes of the form 2p − 1 where p is an odd prime.
[Hint: For all n, 4n ≡ 4 (mod 12).]

3. Determine whether the following quadratic congruences are solvable:
(a) x2 ≡ 219 (mod 419).
(b) 3x2 + 6x + 5 ≡ 0 (mod 89).
(c) 2x2 + 5x − 9 ≡ 0 (mod 101).

4. Verify that if p is an odd prime, then

(−2/p) =
{

1 if p ≡ 1 (mod 8) or p ≡ 3 (mod 8)

−1 if p ≡ 5 (mod 8) or p ≡ 7 (mod 8)

5. (a) Prove that if p > 3 is an odd prime, then

(−3/p) =
{

1 if p ≡ 1 (mod 6)

−1 if p ≡ 5 (mod 6)
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(b) Using part (a), show that there are infinitely many primes of the form 6k + 1.
[Hint: Assume that p1, p2, . . . , pr are all the primes of the form 6k + 1 and consider
the integer N = (2p1 p2 · · · pr )2 + 3.]

6. Use Theorem 9.2 and Problems 4 and 5 to determine which primes can divide integers
of the forms n2 + 1, n2 + 2, or n2 + 3 for some value of n.

7. Prove that there exist infinitely many primes of the form 8k + 3.
[Hint: Assume that there are only finitely many primes of the form 8k + 3, say p1,
p2, . . . , pr , and consider the integer N = (p1 p2 · · · pr )2 + 2.]

8. Find a prime number p that is simultaneously expressible in the forms x2 + y2, u2 + 2v2,
and r2 + 3s2.
[Hint: (−1/p) = (−2/p) = (−3/p) = 1.]

9. If p and q are odd primes satisfying p = q + 4a for some a, establish that

(a/p) = (a/q)

and, in particular, that (6/37) = (6/13).
[Hint: Note that (a/p) = (−q/p) and use the Quadratic Reciprocity Law.]

10. Establish each of the following assertions:
(a) (5/p) = 1 if and only if p ≡ 1, 9, 11, or 19 (mod 20).
(b) (6/p) = 1 if and only if p ≡ 1, 5, 19, or 23 (mod 24).
(c) (7/p) = 1 if and only if p ≡ 1, 3, 9, 19, 25, or 27 (mod 28).

11. Prove that there are infinitely many primes of the form 5k − 1.
[Hint: For any n > 1, the integer 5(n!)2 − 1 has a prime divisor p > n that is not of the
form 5k + 1; hence, (5/p) = 1.]

12. Verify the following:
(a) The prime divisors p �= 3 of the integer n2 − n + 1 are of the form 6k + 1.

[Hint: If p | n2 − n + 1, then (2n − 1)2 ≡ −3 (mod p).]
(b) The prime divisors p �= 5 of the integer n2 + n − 1 are of the form 10k + 1 or

10k + 9.
(c) The prime divisors p of the integer 2n(n + 1) + 1 are of the form p ≡ 1 (mod 4).

[Hint: If p | 2n(n + 1) + 1, then (2n + 1)2 ≡ −1 (mod p).]
(d) The prime divisors p of the integer 3n(n + 1) + 1 are of the form p ≡ 1 (mod 6).

13. (a) Show that if p is a prime divisor of 839 = 382 − 5 · 112, then (5/p) = 1. Use this
fact to conclude that 839 is a prime number.
[Hint: It suffices to consider those primes p < 29.]

(b) Prove that both 397 = 202 − 3 and 733 = 292 − 3 · 62 are primes.
14. Solve the quadratic congruence x2 ≡ 11 (mod 35).

[Hint: After solving x2 ≡ 11 (mod 5) and x2 ≡ 11 (mod 7), use the Chinese Remainder
Theorem.]

15. Establish that 7 is a primitive root of any prime of the form p = 24n + 1.
[Hint: Because p ≡ 3 or 5 (mod 7), (7/p) = (p/7) = −1.]

16. Let a and b > 1 be relatively prime integers, with b odd. If b = p1 p2 · · · pr is the de-
composition of b into odd primes (not necessarily distinct) then the Jacobi symbol (a/b)
is defined by

(a/b) = (a/p1)(a/p2) · · · (a/pr )

where the symbols on the right-hand side of the equality sign are Legendre symbols.
Evaluate the Jacobi symbols

(21/221) (215/253) (631/1099)
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17. Under the hypothesis of the previous problem, show that if a is a quadratic residue of b,
then (a/b) = 1; but, the converse is false.

18. Prove that the following properties of the Jacobi symbol hold: If b and b′ are positive
odd integers and gcd(aa′, bb′) = 1, then
(a) a ≡ a′ (mod b) implies that (a/b) = (a′/b).
(b) (aa′/b) = (a/b)(a′/b).
(c) (a/bb′) = (a/b)(a/b′).
(d) (a2/b) = (a/b2) = 1.
(e) (1/b) = 1.
(f) (−1/b) = (−1)(b−1)/2.

[Hint: Whenever u and v are odd integers, (u − 1)/2 + (v − 1)/2 ≡ (uv − 1)/2
(mod 2).]

(g) (2/b) = (−1)(b2−1)/8.
[Hint: Whenever u and v are odd integers, (u2 − 1)/8 + (v2 − 1)/8 ≡ [(uv)2 − 1]/8
(mod 2).]

19. Derive the Generalized Quadratic Reciprocity Law: If a and b are relatively prime positive
odd integers, each greater than 1, then

(a/b)(b/a) = (−1)
a−1

2
b−1

2

[Hint: See the hint in Problem 18(f ).]
20. Using the Generalized Quadratic Reciprocity Law, determine whether the congruence

x2 ≡ 231 (mod 1105) is solvable.

9.4 QUADRATIC CONGRUENCES WITH COMPOSITE MODULI

So far in the proceedings, quadratic congruences with (odd) prime moduli have been
of paramount importance. The remaining theorems broaden the horizon by allowing
a composite modulus. To start, let us consider the situation where the modulus is a
power of a prime.

Theorem 9.11. If p is an odd prime and gcd(a, p) = 1, then the congruence

x2 ≡ a (mod pn) n ≥ 1

has a solution if and only if (a/p) = 1.

Proof. As is common with many “if and only if” theorems, half of the proof is trivial
whereas the other half requires considerable effort: If x2 ≡ a (mod pn) has a solution,
then so does x2 ≡ a (mod p)—in fact, the same solution—whence (a/p) = 1.

For the converse, suppose that (a/p) = 1. We argue that x2 ≡ a (mod pn) is
solvable by inducting on n. If n = 1, there is really nothing to prove; indeed, (a/p) = 1
is just another way of saying that x2 ≡ a (mod p) can be solved. Assume that the result
holds for n = k ≥ 1, so that x2 ≡ a (mod pk) admits a solution x0. Then

x2
0 = a + bpk

for an appropriate choice of b. In passing from k to k + 1, we shall use x0 and b to
write down explicitly a solution to the congruence x2 ≡ a (mod pk+1).

Toward this end, we first solve the linear congruence

2x0 y ≡ −b (mod p)
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obtaining a unique solution y0 modulo p (this is possible because gcd(2x0, p) = 1).
Next, consider the integer

x1 = x0 + y0 pk

Upon squaring this integer, we get

(x0 + y0 pk)2 = x2
0 + 2x0 y0 pk + y2

0 p2k

= a + (b + 2x0 y0)pk + y2
0 p2k

But p | (b + 2x0 y0), from which it follows that

x2
1 = (x0 + y0 pk)2 ≡ a (mod pk+1)

Thus, the congruence x2 ≡ a (mod pn) has a solution for n = k + 1 and, by induction,
for all positive integers n.

Let us run through a specific example in detail. The first step in obtaining a
solution of, say, the quadratic congruence

x2 ≡ 23 (mod 72)

is to solve x2 ≡ 23 (mod 7), or what amounts to the same thing, the congruence

x2 ≡ 2 (mod 7)

Because (2/7) = 1, a solution surely exists; in fact, x0 = 3 is an obvious choice.
Now x2

0 can be represented as

32 = 9 = 23 + (−2)7

so that b = −2 (in our special case, the integer 23 plays the role of a). Following
the proof of Theorem 9.11, we next determine y so that

6y ≡ 2 (mod 7)

that is, 3y ≡ 1 (mod 7). This linear congruence is satisfied by y0 = 5. Hence,

x0 + 7y0 = 3 + 7 · 5 = 38

serves as a solution to the original congruence x2 ≡ 23 (mod 49). It should be noted
that −38 ≡ 11 mod (49) is the only other solution.

If, instead, the congruence

x2 ≡ 23 (mod 73)

were proposed for solution, we would start with

x2 ≡ 23 (mod 72)

obtaining a solution x0 = 38. Because

382 = 23 + 29 · 72

the integer b = 29. We would then find the unique solution y0 = 1 of the linear
congruence

76y ≡ −29 (mod 7)
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Then x2 ≡ 23 (mod 73) is satisfied by

x0 + y0 · 72 = 38 + 1 · 49 = 87

as well as −87 ≡ 256 (mod 73).
Having dwelt at length on odd primes, let us now take up the case p = 2. The

next theorem supplies the pertinent information.

Theorem 9.12. Let a be an odd integer. Then we have the following:

(a) x2 ≡ a (mod 2) always has a solution.
(b) x2 ≡ a (mod 4) has a solution if and only if a ≡ 1 (mod 4).
(c) x2 ≡ a (mod 2n), for n ≥ 3, has a solution if and only if a ≡ 1 (mod 8).

Proof. The first assertion is obvious. The second depends on the observation that the
square of any odd integer is congruent to 1 modulo 4. Consequently, x2 ≡ a (mod 4)
can be solved only when a is of the form 4k + 1; in this event, there are two solutions
modulo 4, namely, x = 1 and x = 3.

Now consider the case in which n ≥ 3. Because the square of any odd integer
is congruent to 1 modulo 8, we see that for the congruence x2 ≡ a (mod 2n) to be
solvable a must be of the form 8k + 1. To go the other way, let us suppose that a ≡
1 (mod 8) and proceed by induction on the exponent n. When n = 3, the congruence
x2 ≡ a (mod 2n) is certainly solvable; indeed, each of the integers 1, 3, 5, 7 satisfies
x2 ≡ 1 (mod 8). Fix a value of n ≥ 3 and assume, for the induction hypothesis, that
the congruence x2 ≡ a (mod 2n) admits a solution x0. Then there exists an integer b
for which

x2
0 = a + b2n

Because a is odd, so is the integer x0. It is therefore possible to find a unique solution
y0 of the linear congruence

x0 y ≡ −b (mod 2)

We argue that the integer

x1 = x0 + y02n−1

satisfies the congruence x2 ≡ a (mod 2n+1). Squaring yields

(x0 + y02n−1)2 = x2
0 + x0 y02n + y2

0 22n−2

= a + (b + x0 y0)2n + y2
0 22n−2

By the way y0 was chosen, 2 | (b + x0 y0); hence,

x2
1 = (x0 + y02n−1)2 ≡ a (mod 2n+1)

(we also use the fact that 2n − 2 = n + 1 + (n − 3) ≥ n + 1). Thus, the congruence
x2 ≡ a (mod 2n+1) is solvable, completing the induction step and the proof.

To illustrate: The quadratic congruence x2 ≡ 5 (mod 4) has a solution, but
x2 ≡ 5 (mod 8) does not; on the other hand, both x2 ≡ 17 (mod 16) and x2 ≡ 17
(mod 32) are solvable.
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In theory, we can now completely settle the question of when there exists an
integer x such that

x2 ≡ a (mod n) gcd(a, n) = 1 n > 1

For suppose that n has the prime-power decomposition

n = 2k0 pk1
1 pk2

2 · · · pkr
r k0 ≥ 0, ki ≥ 0

where the pi are distinct odd primes. Since the problem of solving the quadratic
congruence x2 ≡ a (mod n) is equivalent to that of solving the system of congruences

x2 ≡ a (mod 2k0 )

x2 ≡ a (mod pk1
1 )

...
x2 ≡ a (mod pkr

r )

our last two results may be combined to give the following general conclusion.

Theorem 9.13. Let n = 2k0 pk1
1 · · · pkr

r be the prime factorization of n > 1 and let
gcd(a, n) = 1. Then x2 ≡ a (mod n) is solvable if and only if

(a) (a/pi ) = 1 for i = 1, 2, . . . , r ;
(b) a ≡ 1 (mod 4) if 4 | n, but 8 � | n; a ≡ 1 (mod 8) if 8 | n.

PROBLEMS 9.4

1. (a) Show that 7 and 18 are the only incongruent solutions of x2 ≡ −1 (mod 52).
(b) Use part (a) to find the solutions of x2 ≡ −1 (mod 53).

2. Solve each of the following quadratic congruences:
(a) x2 ≡ 7 (mod 33).
(b) x2 ≡ 14 (mod 53).
(c) x2 ≡ 2 (mod 73).

3. Solve the congruence x2 ≡ 31 (mod 114).
4. Find the solutions of x2 + 5x + 6 ≡ 0 (mod 53) and x2 + x + 3 ≡ 0 (mod 33).
5. Prove that if the congruence x2 ≡ a (mod 2n), where a is odd and n ≥ 3, has a solution,

then it has exactly four incongruent solutions.
[Hint: If x0 is any solution, then the four integers x0, −x0, x0 + 2n−1, −x0 + 2n−1 are
incongruent modulo 2n and comprise all the solutions.]

6. From 232 ≡ 17 (mod 27), find three other solutions of the quadratic congruence x2 ≡ 17
(mod 27).

7. First determine the values of a for which the congruences below are solvable and then
find the solutions of these congruences:
(a) x2 ≡ a (mod 24).
(b) x2 ≡ a (mod 25).
(c) x2 ≡ a (mod 26).

8. For fixed n > 1, show that all solvable congruences x2 ≡ a (mod n) with gcd(a, n) = 1
have the same number of solutions.
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9. (a) Without actually finding them, determine the number of solutions of the congruences
x2 ≡ 3 (mod 112 · 232) and x2 ≡ 9 (mod 23 · 3 · 52).

(b) Solve the congruence x2 ≡ 9 (mod 23 · 3 · 52).
10. (a) For an odd prime p, prove that the congruence 2x2 + 1 ≡ 0 (mod p) has a solution

if and only if p ≡ 1 or 3 (mod 8).
(b) Solve the congruence 2x2 + 1 ≡ 0 (mod 112).

[Hint: Consider integers of the form x0 + 11k, where x0 is a solution of 2x2 + 1 ≡
0 (mod 11).]
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CHAPTER

10
INTRODUCTION TO CRYPTOGRAPHY

I am fairly familiar with all forms of secret writings and am myself the
author of a trifling manuscript on the subject.

Sir Arthur Conan Doyle

10.1 FROM CAESAR CIPHER TO PUBLIC KEY CRYPTOGRAPHY

Classically, the making and breaking of secret codes has usually been confined to
diplomatic and military practices. With the growing quantity of digital data stored
and communicated by electronic data-processing systems, organizations in both the
public and commercial sectors have felt the need to protect information from un-
wanted intrusion. Indeed, the widespread use of electronic funds transfers has made
privacy a pressing concern in most financial transactions. There thus has been a
recent surge of interest by mathematicians and computer scientists in cryptogra-
phy (from the Greek kryptos meaning hidden and graphein meaning to write), the
science of making communications unintelligible to all except authorized parties.
Cryptography is the only known practical means for protecting information transmit-
ted through public communications networks, such as those using telephone lines,
microwaves, or satellites.

In the language of cryptography, where codes are called ciphers, the information
to be concealed is called plaintext. After transformation to a secret form, a message
is called ciphertext. The process of converting from plaintext to ciphertext is said
to be encrypting (or enciphering), whereas the reverse process of changing from
ciphertext back to plaintext is called decrypting (or deciphering).

197
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One of the earliest cryptographic systems was used by the great Roman emperor
Julius Caesar around 50 B.C. Caesar wrote to Marcus Cicero using a rudimentary
substitution cipher in which each letter of the alphabet is replaced by the letter that
occurs three places down the alphabet, with the last three letters cycled back to the
first three letters. If we write the ciphertext equivalent underneath the plaintext letter,
the substitution alphabet for the Caesar cipher is given by

Plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Ciphertext: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

For example, the plaintext message

CAESAR WAS GREAT

is transformed into the ciphertext

FDHVDU ZDV JUHDW

The Caesar cipher can be described easily using congruence theory. Any plaintext
is first expressed numerically by translating the characters of the text into digits by
means of some correspondence such as the following:

A B C D E F G H I J K L M
00 01 02 03 04 05 06 07 08 09 10 11 12

N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

If P is the digital equivalent of a plaintext letter and C is the digital equivalent of
the corresponding ciphertext letter, then

C ≡ P + 3 (mod 26)

Thus, for instance, the letters of the message in Eq. (1) are converted to their equiv-
alents:

02 00 04 18 00 17 22 00 18 06 17 04 00 19

Using the congruence C ≡ P + 3 (mod 26), this becomes the ciphertext

05 03 07 21 03 20 25 03 21 09 20 07 03 22

To recover the plaintext, the procedure is simply reversed by means of the congruence

P ≡ C − 3 ≡ C + 23 (mod 26)

The Caesar cipher is very simple and, hence, extremely insecure. Caesar himself
soon abandoned this scheme—not only because of its insecurity, but also because
he did not trust Cicero, with whom he necessarily shared the secret of the cipher.

An encryption scheme in which each letter of the original message is replaced
by the same cipher substitute is known as a monoalphabetic cipher. Such crypto-
graphic systems are extremely vulnerable to statistical methods of attack because
they preserve the frequency, or relative commonness, of individual letters. In a
polyalphabetic cipher, a plaintext letter has more than one ciphertext equivalent: the
letter E, for instance, might be represented by J, Q, or X, depending on where it
occurs in the message.
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General fascination with cryptography had its initial impetus with the short
story The Gold Bug, published in 1843 by the American writer Edgar Allan Poe.
It is a fictional tale of the use of a table of letter frequencies to decipher directions
for finding Captain Kidd’s buried treasure. Poe fancied himself a cryptologist far
beyond the ordinary. Writing for Alexander’s Weekly, a Philadelphia newspaper, he
once issued a claim that he could solve “forthwith” any monoalphabetic substitution
cipher sent in by readers. The challenge was taken up by one G. W. Kulp, who
submitted a 43-word ciphertext in longhand. Poe showed in a subsequent column
that the entry was not genuine, but rather a “jargon of random characters having no
meaning whatsoever.” When Kulp’s cipher submission was finally decoded in 1975,
the reason for the difficulty became clear; the submission contained a major error on
Kulp’s part, along with 15 minor errors, which were most likely printer’s mistakes
in reading Kulp’s longhand.

The most famous example of a polyalphabetic cipher was published by the
French cryptographer Blaise de Vigenère (1523–1596) in his Traicté de Chiffres
of 1586. To implement this system, the communicating parties agree on an easily
remembered word or phrase. With the standard alphabet numbered from A = 00 to
Z = 25, the digital equivalent of the keyword is repeated as many times as nec-
essary beneath that of the plaintext message. The message is then enciphered by
adding, modulo 26, each plaintext number to the one immediately beneath it. The
process may be illustrated with the keyword READY, whose numerical version
is 17 04 00 03 24. Repetitions of this sequence are arranged below the numerical
plaintext of the message

ATTACK AT ONCE

to produce the array

00 19 19 00 02 10 00 19 14 13 02 04

17 04 00 03 24 17 04 00 03 24 17 04

When the columns are added modulo 26, the plaintext message is encrypted as

17 23 19 03 00 01 04 19 17 11 19 08

or, converted to letters,

RXTDAB ET RLTI

Notice that a given letter of plaintext is represented by different letters in ciphertext.
The double T in the word ATTACK no longer appears as a double letter when
ciphered, while the ciphertext letter R first corresponds to A and then to O in the
original message.

In general, any sequence of n letters with numerical equivalents b1, b2, . . . , bn

(00 ≤ bi ≤ 25) will serve as the keyword. The plaintext message is expressed as
successive blocks P1 P2 · · · Pn of n two-digit integers Pi , and then converted to
ciphertext blocks C1C2 · · · Cn by means of the congruences

Ci ≡ Pi + bi (mod 26) 1 ≤ i ≤ n

Decryption is carried out by using the relations

Pi ≡ Ci − bi (mod 26) 1 ≤ i ≤ n
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A weakness in Vigenère’s approach is that once the length of the keyword has
been determined, a coded message can be regarded as a number of separate mono-
alphabetic ciphers, each subject to straightforward frequency analysis. A variant to
the continued repetition of the keyword is what is called a running key, a random
assignment of ciphertext letters to plaintext letters. A favorite procedure for generat-
ing such keys is to use the text of a book, where both sender and recipient know the
title of the book and the starting point of the appropriate lines. Because a running
key cipher completely obscures the underlying structure of the original message, the
system was long thought to be secure. But it does not, as Scientific American once
claimed, produce ciphertext that is “impossible of translation.”

A clever modification that Vigenère contrived for his polyalphabetic cipher is
currently called the autokey (“automatic key”). This approach makes use of the
plaintext message itself in constructing the encryption key. The idea is to start off
the keyword with a short seed or primer (generally a single letter) followed by
the plaintext, whose ending is truncated by the length of the seed. The autokey
cipher enjoyed considerable popularity in the 16th and 17th centuries, since all it
required of a legitimate pair of users was to remember the seed, which could easily be
changed.

Let us give a simple example of the method.

Example 10.1. Assume that the message

ONE IF BY DAWN

is to be encrypted. Taking the letter K as the seed, the keyword becomes

KONEIFBYDAW

When both the plaintext and keyword are converted to numerical form, we obtain the
array

14 13 04 08 05 01 24 03 00 22 13

10 14 13 04 08 05 01 24 03 00 22

Adding the integers in matching positions modulo 26 yields the ciphertext

24 01 17 12 13 06 25 01 03 22 09

or, changing back to letters:

YBR MN GZ BDWJ

Decipherment is achieved by returning to the numerical form of both the plain-
text and its ciphertext. Suppose that the plaintext has digital equivalents P1 P2 . . . Pn

and the ciphertext C1C2 . . . Cn . If S indicates the seed, then the first plaintext num-
ber is

P1 = C1 − S = 24 − 10 ≡ 14 (mod 26)
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Thus, the deciphering transformation becomes
Pk = Ck − Pk−1 (mod 26), 2 ≤ k ≤ n

This recovers, for example, the integers

P2 ≡ 01 − 14 = −13 ≡ 13 (mod 26)

P3 ≡ 17 − 13 ≡ 4 (mod 26)

where, to maintain the two-digit format, the 4 is written 04.
A way to ensure greater security in alphabetic substitution ciphers was devised

in 1929 by Lester Hill, an assistant professor of mathematics at Hunter College.
Briefly, Hill’s approach is to divide the plaintext message into blocks of n letters
(possibly filling out the last block by adding “dummy” letters such as X’s) and then
to encrypt block by block using a system of n linear congruences in n variables.
In its simplest form, when n = 2, the procedure takes two successive letters and
transforms their numerical equivalents P1 P2 into a block C1C2 of ciphertext
numbers via the pair of congruences

C1 ≡ a P1 + bP2 (mod 26)

C2 ≡ cP1 + d P2 (mod 26)

To permit decipherment, the four coefficients a, b, c, d must be selected so the
gcd(ad − bc, 26) = 1.

Example 10.2. To illustrate Hill’s cipher, let us use the congruences

C1 ≡ 2P1 + 3P2 (mod 26)

C2 ≡ 5P1 + 8P2 (mod 26)

to encrypt the message BUY NOW. The first block BU of two letters is numerically
equivalent to 01 20. This is replaced by

2(01) + 3(20) ≡ 62 ≡ 10 (mod 26)

5(01) + 8(20) ≡ 165 ≡ 09 (mod 26)

Continuing two letters at a time, we find that the completed ciphertext is

10 09 09 16 16 12

which can be expressed alphabetically as KJJ QQM.
Decipherment requires solving the original system of congruences for P1 and P2

in terms of C1 and C2. It follows from the proof of Theorem 4.9 that the plaintext block
P1 P2 can be recovered from the ciphertext block C1C2 by means of the congruences

P1 ≡ 8C1 − 3C2 (mod 26)

P2 ≡ −5C1 + 2C2 (mod 26)

For the block 10 09 of ciphertext, we calculate

P1 ≡ 8(10) − 3(09) ≡ 53 ≡ 01 (mod 26)

P2 ≡ −5(10) + 2(09) ≡ −32 ≡ 20 (mod 26)

which is the same as the letter-pair BU. The remaining plaintext can be restored in a
similar manner.
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An influential nonalphabetic cipher was devised by Gilbert S. Verman in 1917
while he was employed by the American Telephone and Telegraph Company
(AT&T). Verman was interested in safeguarding information sent by the newly de-
veloped teletypewriter. At that time, wire messages were transmitted in the Baudot
code, a code named after its French inventor J. M. E. Baudot. Baudot represented
each letter of the alphabet by a five-element sequence of two symbols. If we take
the two symbols to be 1 and 0, then the complete table is given by

A = 11000 J = 11010 S = 10100
B = 10011 K = 11110 T = 00001
C = 01110 L = 01001 U = 11100
D = 10010 M = 00111 V = 01111
E = 10000 N = 00110 W = 11001
F = 10110 O = 00011 X = 10111
G = 01011 P = 01101 Y = 10101
H = 00101 Q = 11101 Z = 10001
I = 01100 R = 01010

Any plaintext message such as

ACT NOW

would first be transformed into a sequence of binary digits:

110000111000001001100001111001

Verman’s innovation was to take as the encryption key an arbitrary sequence of 1’s
and 0’s with length the same as that of the numerical plaintext. A typical key might
appear as

101001011100100010001111001011

where the digits could be chosen by flipping a coin with heads as 1 and tails as 0.
Finally, the ciphertext is formed by adding modulo 2 the digits in equivalent places
in the two binary strings. The result in this instance becomes

011001100100101011101111110010

A crucial point is that the intended recipient must possess in advance the encryption
key, for then the numerical plaintext can be reconstructed by merely adding modulo
2 corresponding digits of the encryption key and ciphertext.

In the early applications of Verman’s telegraph cipher, the keys were written on
numbered sheets of paper and then bound into pads held by both correspondents. A
sheet was torn out and destroyed after its key had been used just once. For this reason,
the Verman enciphering procedure soon became known as the one-time system
or one-time pad. The cryptographic strength of Verman’s method of enciphering
resided in the possibly extreme length of the encryption key and the absence of any
pattern within its entries. This assured security that was attractive to the military or
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diplomatic services of many countries. In 1963, for instance, a teleprinter hot line
was established between Washington and Moscow using a one-time tape.

In the 1970s, cryptographic systems involving modular exponentiation (that is,
finding the least positive residue of ak(mod n) where a, k, n are positive integers)
became increasingly prominent. By contrast with conventional cryptosystems, such
as Caesar’s cipher in which a message’s sender and receiver share the same secret
code, exponential systems require two distinct keys. One key encrypts; the other
decrypts. These asymmetric-key systems are not difficult to implement. A user who
wishes to conceal information might begin by selecting a (large) prime p to serve
as the enciphering modulus, and a positive integer 2 ≤ k ≤ p − 2, the enciphering
exponent. Modulus and exponent, both kept secret, must satisfy gcd(k, p − 1) = 1.

The encryption process begins with the conversion of the message to numerical
form M by means of a “digital alphabet” in which each letter of plaintext is replaced
by a two-digit integer. One standard procedure is to use the following assignment

A = 00 H = 07 O = 14 V = 21
B = 01 I = 08 P = 15 W = 22
C = 02 J = 09 Q = 16 X = 23
D = 03 K = 10 R = 17 Y = 24
E = 04 L = 11 S = 18 Z = 25
F = 05 M = 12 T = 19
G = 06 N = 13 U = 20

with 26 being used to indicate an empty space between words. In this scheme, the
message

THE BROWN FOX IS QUICK

would be transformed into the numerical string

19072426011714221326051423260818261620080210

It is assumed that the plaintext number M is less than the enciphering modulus p;
otherwise it would be impossible to distinguish M from a larger integer congruent
to it modulo p. When the message is too lengthy to be represented by a single
integer M < p, then it should be partitioned into blocks of digits M1, M2, . . . , Ms

in which each block has the same number of digits. (A helpful guide is that when
2525 < p < 15500 each block should contain four digits.) It may be necessary to
fill out the final block by appending one or more 23’s, indicating X.

Next, the sender disguises the plaintext number M as a ciphertext number r by
raising M to the k power and reducing the result modulo p; that is,

Mk ≡ r (mod p)

At the other end, the intended recipient deciphers the transmitted communication
by first determining the integer 2 ≤ j ≤ p − 2, the recovery exponent, for which

k j ≡ 1 (mod p − 1)
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This can be achieved by using the Euclidean algorithm to express j as a solution x
to the equation

kx + (p − 1)y = 1

The recipient can now retrieve M from r by calculating the value r j (mod p). For,
knowing that k j = 1 + (p − 1)t for some t , Fermat’s theorem will lead to

r j ≡ (Mk) j ≡ M1+(p−1)t

≡ M(M p−1)t ≡ M · 1t (mod p)

The numbers p and k must be kept secret from all except the recipient of the message,
who needs them to arrive at the value j . That is, the pair (p, k) forms the sender’s
encryption key.

Example 10.3. Let us illustrate the cryptographic procedure with a simple example:
say, with the message

SEND MONEY

We select the prime p = 2609 for the enciphering modulus and the positive integer
k = 19 for the enciphering exponent. The letters of the message are replaced by their
numerical equivalents, producing the plaintext number

18041303261214130424

This string of digits is broken into four-digit blocks:

1804 1303 2612 1413 0424

Successive blocks are enciphered by raising each to the 19th power and then reducing
modulo 2609. The method of repeated squaring can be used to make the exponentiation
process more manageable. For instance, in the case of the block 1804

18042 ≡ 993 (mod 2609)

18044 ≡ 9932 ≡ 2456 (mod 2609)

18048 ≡ 24562 ≡ 2537 (mod 2609)

180416 ≡ 25372 ≡ 2575 (mod 2609)

and so

180419 = 18041+2+16 ≡ 1804 · 993 · 2575 ≡ 457 (mod 2609)

The entire encrypted message consists of the list of numbers

0457 0983 1538 2041 0863

Since gcd(19, 2608) = 1, working backward through the equations of the Euclidean
algorithm yields

1 = 4 · 2608 + (−549)19

But −549 ≡ 2059 (mod 2608) so that 1 ≡ 2059 · 19 (mod 2608), making 2059 the
recovery exponent. Indeed, 4572059 ≡ 1804 (mod 2609).
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The exponential cryptosystem just described (the so-called Pohlig-Hellman sys-
tem) has drawbacks when employed in a communication network with many users.
The major problem is the secure delivery of the encryption key, for the key must
be provided in advance of a ciphertext message in order for the decryption key to
be calculated. There is also the disadvantage of having to make frequent changes
to the encryption key—perhaps, with each message—to avoid having some diligent
eavesdropper become aware of it. The concept of public-key cryptography was in-
troduced to circumvent these difficulties. It also uses two distinct keys, but there is
no easy computation method for deriving the decryption key from the encryption
key. Indeed, the encryption key can safely be made public; the decryption key is
secret and is owned solely by the message’s recipient. The advantage of a public-key
cryptosystem is clear: it is not necessary for sender and recipient to part with a key,
or even to meet, before they communicate with one another.

Whitfield Diffie and Martin Hellman laid out the theoretical framework of
public-key cryptography in their landmark 1976 paper, “New Directions in Cryptog-
raphy.” Shortly thereafter, they developed a workable scheme, one whose security
was grounded in a celebrated computation problem known as the knapsack problem.
The public-key system most widely used today was proposed in 1978 by Ronald
Rivest, Adi Shamir, and Leonard Adleman and is called RSA after their initials.
Its security rests on the assumption that, in the current state of computer technol-
ogy, the factorization of composite numbers involving large primes is prohibitively
time-consuming.

To initiate communication, a typical user of the RSA system chooses distinct
primes p and q large enough to place the factorization of their product n = pq,
the enciphering modulus, beyond current computational capabilities. For instance,
p and q might be picked with 200 digits each so that n would have around 400
digits. Having obtained n, the user takes for the enciphering exponent a random
integer 1 < k < φ(n) with gcd(k, φ(n)) = 1. The pair (n, k) is placed in a public
file, analogous to a telephone directory, to serve as the user’s personal encryption
key. This allows anyone else in the network to forward a ciphered message to that
individual. Notice that while the integer n is openly revealed, the listed public key
does not mention the two factors of n.

A person wishing to correspond privately with the user proceeds in the manner
indicated earlier. The literal message is first converted into a plaintext number, which
thereafter is partitioned into suitably sized blocks of digits. The sender looks up the
user’s encryption key (n, k) in the public directory and disguises a block M < n by
calculating

Mk ≡ r (mod n)

The decryption process is carried out using the Euclidean algorithm to obtain the
integer 1 < j < φ(n) satisfying k j ≡ 1 (mod φ(n)); j exists because of the re-
quirement gcd(k, φ(n) = 1. Euler’s generalization of Fermat’s theorem plays a crit-
ical role in confirming that the congruence r j ≡ M (mod n) holds. Indeed, since
k j = 1 + φ(n)t for some integer j , it follows that

r j ≡ (Mk) j ≡ M1+φ(n)t

≡ M(Mφ(n))t ≡ M · 1t ≡ M (mod n)
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The recovery exponent j can be determined only by someone who is aware of both
the values k and φ(n) = (p − 1)(q − 1) and, consequently, must know the prime
factors p and q of n. This makes j secure from some undesired third party, who
would know only the public key (n, k). The triple (p, q, j) can be viewed as the
user’s private key.

Example 10.4. For an illustration of the RSA public-key algorithm, let us carry through
an example involving primes of an unrealistically small size. Suppose that a message
is to be sent to an individual whose listed public-key is (2701, 47). The key was arrived
at by selecting the two primes p = 37 and q = 73, which in turn led to the encipering
modulus n = 37 · 73 = 2701 and φ(n) = 36 · 72 = 2592. Because gcd(47, 2592) = 1,
the integer k = 47 was taken as the enciphering exponent.

The message to be encrypted and forwarded is

NO WAY TODAY

It is first translated into a digital equivalent using the previously indicated letter sub-
stitutions to become

M = 131426220024261914030024

This plaintext number is thereafter expressed as four-digit blocks

1314 2622 0024 2619 1403 0024

The corresponding ciphertext numbers are obtained by raising each block to the 47
power and reducing the results modulo 2701. In the first block, repeated squaring
produces the value

131447 ≡ 1241 (mod 2701)

The completed encryption of the message is the list

1241 1848 0873 1614 2081 0873

For the deciphering operation, the recipient employs the Euclidean algo-
rithm to obtain the equation 47 · 1103 + 2592(−20) = 1, which is equivalent to
47 · 1103 ≡ 1 (mod 2592). Hence, j = 1103 is the recovery exponent. It follows that

12411103 ≡ 1314 (mod 2701)

and so on.

For the RSA cryptosystem to be secure, it must not be computationally feasible
to recover the plaintext M from the information assumed to be known to a third
party, namely, the listed public-key (n, k). The direct method of attack would be
to attempt to factor n, an integer of huge magnitude, for once the factors are deter-
mined, the recovery exponent j can be calculated from φ(n) = (p − l)(q − 1) and
k. Our confidence in the RSA system rests on what is known as the work factor, the
expected amount of computer time needed to factor the product of two large primes.
Factoring is computationally more difficult than distinguishing between primes and
composites. On today’s fastest computers, a 200-digit number can routinely be tested
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for primality in less than 20 seconds, whereas the running time required to factor
a composite number of the same size is prohibitive. It has been estimated that the
quickest factoring algorithm known can use approximately (1.2) 1023 computer op-
erations to resolve an integer with 200 digits into its prime factors. Assuming that
each operation takes 1 nanosecond (10−9 seconds), the factorization time would
be about (3.8)106 years. Given unlimited computing time and some unimaginably
efficient factoring algorithm, the RSA cryptosystem could be broken, but for the
present it appears to be quite safe. All we need do is choose larger primes p and q
for the enciphering moduli, always staying ahead of the current state of the art in
factoring integers.

A greater threat is posed by the use of widely distributed networks of computers,
working simultaneously on pieces of data necessary for a factorization and commu-
nicating their results to a central site. This is seen in the factoring of RSA-129, one
of the most famous problems in cryptography.

To demonstrate that their cryptosystem could withstand any attack on its security,
the three inventors submitted a ciphertext message to Scientific American, with an
offer of $100 to anyone who could decode it. The message depended on a 129-digit
enciphering modulus that was the product of two primes of approximately the same
length. This large number acquired the name RSA-129. Taking into account the
most powerful factoring methods and fastest computers available at the time, it
was estimated that at least 40 quadrillion years would be required to break down
RSA-129 and decipher the message. However, by devoting enough computing power
to the task, the factorization was realized in 1994. A worldwide network of some
600 volunteers participated in the project, running more than 1600 computers over
an 8-month period. What seemed utterly beyond reach in 1977 was accomplished a
mere 17 years later. The plaintext message is the sentence

“The magic words are squeamish ossifrage.”

(An ossifrage, by the way, is a kind of hawk.)
Drawn up in 1991, the 42 numbers in the RSA Challenge List serve as something

of a test for recent advances in factorization methods. The latest factoring success
showed that the 193-digit number (640 binary digits) RSA-640 could be written as
the product of two primes having 95 digits each. The Challenge became inactive in
2007.

PROBLEMS 10.1

1. Encrypt the message RETURN HOME using the Caesar cipher.
2. If the Caesar cipher produced KDSSB ELUWKGDB, what is the plaintext message?
3. (a) A linear cipher is defined by the congruence C ≡ a P + b (mod 26), where a and b are

integers with gcd(a, 26) = 1. Show that the corresponding decrypting congruence is
P ≡ a′(C − b) (mod 26), where the integer a′ satisfies aa′ ≡ 1 (mod 26).

(b) Using the linear cipher C ≡ 5P + 11 (mod 26), encrypt the message NUMBER
THEORY IS EASY.

(c) Decrypt the message RXQTGU HOZTKGH FJ KTMMTG, which was produced using
the linear cipher C ≡ 3P + 7 (mod 26).
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4. In a lengthy ciphertext message, sent using a linear cipher C ≡ a P + b (mod 26), the
most frequently occurring letter is Q and the second most frequent is J.
(a) Break the cipher by determining the values of a and b.

[Hint: The most often used letter in English text is E, followed by T.]
(b) Write out the plaintext for the intercepted message WCPQ JZQO MX.

5. (a) Encipher the message HAVE A NICE TRIP using a Vigenère cipher with the keyword
MATH.

(b) The ciphertext BS FMX KFSGR JAPWL is known to have resulted from a Vigenère
cipher whose keyword is YES. Obtain the deciphering congruences and read the
message.

6. (a) Encipher the message HAPPY DAYS ARE HERE using the autokey cipher with
seed Q.

(b) Decipher the message BBOT XWBZ AWUVGK, which was produced by the autokey
cipher with seed RX.

7. (a) Use the Hill cipher

C1 ≡ 5P1 + 2P2 (mod 26)

C2 ≡ 3P1 + 4P2 (mod 26)

to encipher the message GIVE THEM TIME.
(b) The ciphertext ALXWU VADCOJO has been enciphered with the cipher

C1 ≡ 4P1 + 11P2 (mod 26)

C2 ≡ 3P1 + 8P2 (mod 26)

Derive the plaintext.
8. A long string of ciphertext resulting from a Hill cipher

C1 ≡ a P1 + bP2 (mod 26)

C2 ≡ cP1 + d P2 (mod 26)

revealed that the most frequently occurring two-letter blocks were HO and PP, in that
order.
(a) Find the values of a, b, c, and d .

[Hint: The most common two-letter blocks in the English language are TH, followed
by HE.]

(b) What is the plaintext for the intercepted message PPIH HOG RAPVT?
9. Suppose that the message GO SOX is to be enciphered using Verman’s telegraph cipher.

(a) Express the message in Baudot code.
(b) If the enciphering key is

0111010111101010100110010

obtain the alphabetic form of the ciphertext.
10. A plaintext message expressed in Baudot code has been converted by the Verman cipher

into the string

110001110000111010100101111111

If it is known that the key used for encipherment was

011101011001011110001001101010

recover the message in its alphabetic form.
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11. Encrypt the message GOOD CHOICE using an exponential cipher with modulus p =
2609 and exponent k = 7.

12. The ciphertext obtained from an exponential cipher with modulus p = 2551 and enci-
phering exponent k = 43 is

1518 2175 1249 0823 2407

Determine the plaintext message.
13. Encrypt the plaintext message GOLD MEDAL using the RSA algorithm with key

(2561,3).
14. The ciphertext message produced by the RSA algorithm with key (n, k) = (2573, 1013) is

0464 1472 0636 1262 2111

Determine the original message. [Hint: The Euclidean algorithm yields 1013 · 17 ≡
1 (mod 2573).]

15. Decrypt the ciphertext

1030 1511 0744 1237 1719

that was encrypted using the RSA algorithm with key (n, k) = (2623, 869). [Hint: The
recovery exponent is j = 29.]

10.2 THE KNAPSACK CRYPTOSYSTEM

A public-key cryptosystem also can be based on the classic problem in combinatorics
known as the knapsack problem, or the subset sum problem. This problem may be
stated as follows: Given a knapsack of volume V and n items of various volumes
a1, a2, . . . , an , can a subset of these items be found that will completely fill the
knapsack? There is an alternative formulation: For positive integers a1, a2, . . . , an

and a sum V , solve the equation

V = a1x2 + a2x2 + · · · + anxn

where xi = 0 or 1 for i = 1, 2, . . . , n.
There might be no solution, or more than one solution, to the problem, depending

on the choice of the sequence a1, a2, . . . , an and the integer V . For instance, the
knapsack problem

22 = 3x1 + 7x2 + 9x3 + 11x4 + 20x5

is not solvable; but

27 = 3x1 + 7x2 + 9x3 + 11x4 + 20x5

has two distinct solutions, namely

x2 = x3 = x4 = 1 x1 = x5 = 0

and

x2 = x5 = 1 x1 = x3 = x4 = 0

Finding a solution to a randomly chosen knapsack problem is notoriously dif-
ficult. None of the known methods for attacking the problem are substantially less
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time-consuming than is conducting an exhaustive direct search, that is, by testing
all the 2n possibilities for x1, x2, . . . , xn . This is computationally impracticable for
n greater than 100, or so.

However, if the sequence of integers a1, a2, . . . , an happens to have some special
properties, the knapsack problem becomes much easier to solve. We call a sequence
a1, a2, . . . , an superincreasing when each ai is larger than the sum of all the preceding
ones; that is,

ai > a1 + a2 + · · · + ai−1 i = 2, 3, . . . , n

A simple illustration of a superincreasing sequence is 1, 2, 4, 8, . . . , 2n , where
2i > 2i − 1 = 1 + 2 + 4 + · · · + 2i−1. For the corresponding knapsack problem,

V = x1 + 2x2 + 4x3 + · · · + 2nxn V < 2n+1

the unknowns xi are just the digits in the binary expansion of V .
Knapsack problems based on superincreasing sequences are uniquely solvable

whenever they are solvable at all, as our next example shows.

Example 10.5. Let us solve the superincreasing knapsack problem

28 = 3x1 + 5x2 + 11x3 + 20x4 + 41x5

We start with the largest coefficient in this equation, namely 41. Because 41 > 28, it
cannot be part of our subset sum; hence x5 = 0. The next-largest coefficient is 20, with
20 < 28. Now the sum of the preceding coefficients is 3 + 5 + 11 < 28, so that these
cannot fill the knapsack; therefore 20 must be included in the sum, and so x4 = 1.
Knowing the values of x4 and x5, the original problem may be rewritten as

8 = 3x1 + 5x2 + 11x3

A repetition of our earlier reasoning now determines whether 11 should be in our
knapsack sum. In fact, the inequality 11 > 8 forces us to take x3 = 0. To clinch matters,
we are reduced to solving the equation 8 = 3x1 + 5x2, which has the obvious solution
x1 = x2 = 1. This identifies a subset of 3, 5, 11, 20, 41 having the desired sum:

28 = 3 + 5 + 20

It is not difficult to see how the procedure described in Example 10.5 operates,
in general. Suppose that we wish to solve the knapsack problem

V = a1x1 + a2x2 + · · · + anxn

where a1, a2, . . . , an is a superincreasing sequence of integers. Assume that V can
be obtained by using some subset of the sequence, so that V is not larger than the
sum a1 + a2 + · · · + an . Working from right to left in our sequence, we begin by
letting xn = 1 if V ≥ an and xn = 0 if V < an . Then obtain xn−1, xn−2, . . . , x1, in
turn, by choosing

xi =
{

1 if V − (ai+1xi+1 + · · · + anxn) ≥ ai

0 if V − (ai+1xi+1 + · · · + anxn) < ai
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With this algorithm, knapsack problems using superincreasing sequences can be
solved quite readily.

A public-key cryptosystem based on the knapsack problem was devised by
R. Merkle and M. Hellman in 1978. It works as follows. A typical user of the system
starts by choosing a superincreasing sequence a1, a2, . . . , an . Now select a modulus
m > 2an and a multiplier a, with 0 < a < m and gcd(a, m) = 1. This ensures that
the congruence ax ≡ 1 (mod m) has a unique solution, say, x ≡ c (mod m). Finally,
form the sequence of integers b1, b2, . . . , bn defined by

bi ≡ aai (mod m) i = 1, 2, . . . , n

where 0 < bi < m. Carrying out this last transformation generally destroys the
superincreasing property enjoyed by the ai .

The user keeps secret the original sequence a1, a2, . . . , an , and the numbers m
and a, but publishes b1, b2, . . . , bn in a public directory. Anyone wishing to send a
message to the user employs the publicly available sequence as the encryption key.

The sender begins by converting the plaintext message into a string M of 0’s
and 1’s using the binary equivalent of letters:

Letter Binary equivalent Letter Binary equivalent

A 00000 N 01101
B 00001 O 01110
C 00010 P 01111
D 00011 Q 10000
E 00100 R 10001
F 00101 S 10010
G 00110 T 10011
H 00111 U 10100
I 01000 V 10101
J 01001 W 10110
K 01010 X 10111
L 01011 Y 11000
M 01100 Z 11001

For example, the message
First Place

would be converted into the numerical representation

M = 00101 01000 10001 10010 10011 01111 01011 00000
00010 00100

The string is then split into blocks of n binary digits, with the last block being filled
out with 1’s at the end, if necessary. The public encrypting sequence b1, b2, . . . , bn

is next used to transform a given plaintext block, say x1x2 · · · xn , into the sum

S = b1x1 + b2x2 + · · · + bnxn

The number S is the hidden information that the sender transmits over a communi-
cation channel, which is presumed to be insecure.
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Notice that because each xi is either 0 or 1, the problem of recreating the plaintext
block from S is equivalent to solving an apparently difficult knapsack problem
(“difficult” because the sequence b1, b2, . . . , bn is not necessarily superincreasing).
On first impression, the intended recipient and any eavesdropper are faced with the
same task. However, with the aid of the private decryption key, the recipient can
change the difficult knapsack problem into an easy one. No one without the private
key can make this change.

Knowing c and m, the recipient computes

S′ ≡ cS (mod m) 0 ≤ S′ < m

or, expanding this,

S′ ≡ cb1x1 + cb2x2 + · · · + cbnxn (mod m)

≡ caa1x1 + caa2x2 + · · · + caanxn (mod m)

Now ca ≡ 1 (mod m), so that the previous congruence becomes

S′ ≡ a1x1 + a2x2 + · · · + anxn (mod m)

Because m was initially chosen to satisfy m > 2an > a1 + a2 + · · · + an , we obtain
a1x1 + a2x2 + · · · + anxn < m. In light of the condition 0 ≤ S′ < m, the equality

S′ = a1x1 + a2x2 + · · · + anxn

must hold. The solution to this superincreasing knapsack problem furnishes the
solution to the difficult problem, and the plaintext block x1x2 · · · xn of n digits is
thereby recovered from S.

To help make the technique clearer, we consider a small-scale example with
n = 5.

Example 10.6. Suppose that a typical user of this cryptosystem selects as a secret key
the superincreasing sequence 3, 5, 11, 20, 41, the modulus m = 85, and the multiplier
a = 44. Each member of the superincreasing sequence is multiplied by 44 and reduced
modulo 85 to yield 47, 50, 59, 30, 19. This is the encryption key that the user submits
to the public directory.

Someone who wants to send a plaintext message to the user, such as

HELP US

first converts it into the following string of 0’s and 1’s:

M = 00111 00100 01011 01111 10100 10010

The string is then broken up into blocks of digits, in the current case blocks of length 5.
Using the listed public key to encrypt, the sender transforms the successive blocks into

108 = 47 · 0 + 50 · 0 + 59 · 1 + 30 · 1 + 19 · 1

59 = 47 · 0 + 50 · 0 + 59 · 1 + 30 · 0 + 19 · 0

99 = 47 · 0 + 50 · 1 + 59 · 0 + 30 · 1 + 19 · 1

158 = 47 · 0 + 50 · 1 + 59 · 1 + 30 · 1 + 19 · 1

106 = 47 · 1 + 50 · 0 + 59 · 1 + 30 · 0 + 19 · 0

77 = 47 · 1 + 50 · 0 + 59 · 0 + 30 · 1 + 19 · 0
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The transmitted ciphertext consists of the sequence of positive integers

108 59 99 158 106 77

To read the message, the legitimate receiver first solves the congruence 44x ≡ 1
(mod 85), yielding x ≡ 29 (mod 85). Then each ciphertext number is multiplied by 29
and reduced modulo 85, to produce a superincreasing knapsack problem. For instance,
108 is converted to 72, because 108 · 29 ≡ 72 (mod 85); the corresponding knapsack
problem is

72 = 3x1 + 5x2 + 11x3 + 20x4 + 41x5

The procedure for handling superincreasing knapsack problems quickly produces the
solution x1 = x2 = 0, x3 = x4 = x5 = 1. In this way, the first block 00111 of the binary
equivalent of the plaintext is recovered.

The time required to decrypt a knapsack ciphertext message seems to grow expo-
nentially with the number of items in the knapsack. For a high level of security, the
knapsack should contain at least 250 items to choose from. As a second illustration
of how this cryptosystem works, let us note the effect of expanding to n = 10 the
knapsack of Example 10.6.

Example 10.7. Suppose that the user employs the superincreasing sequence

3, 5, 11, 20, 41, 83, 179, 344, 690, 1042

Taking m = 2618 and a = 929, each knapsack item is multiplied by a and reduced
modulo m to produce the publicly listed enciphering key

169, 2027, 2365, 254, 1437, 1185, 1357, 180, 2218, 1976

If the message NOT NOW is to be forwarded, its binary equivalent may be partitioned
into blocks of ten digits as

0110101110 1001101101 0111010110

A given block is encrypted by adding the numbers in the enciphering key whose
locations correspond to the l’s in the block. This will produce the ciphertext

9584 5373 8229

with larger values than those in Example 10.6.
The recipient recovers the hidden message by multiplying each ciphertex number

by the solution of the congruence 929x ≡ 1 (mod 2618); that is, by 31 (mod 2618).
For instance, 9584 · 31 ≡ 1270 (mod 2618) where 1270 can be expressed in terms of
the superincreasing sequence as

1270 = 5 + 11 + 41 + 179 + 344 + 690

The location of each right-hand integer in the knapsack then translates into 0110101110,
the initial binary block.

The Merkle-Hellman cryptosystem aroused a great deal of interest when it was
first proposed, because it was based on a provably difficult problem. However, in
1982, A. Shamir invented a reasonably fast algorithm for solving knapsack problems
that involved sequences b1, b2, . . . , bn , where bi ≡ aai (mod m) and a1, a2, . . . , an

is superincreasing. The weakness of the system is that the public encryption key
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b1, b2, . . . , bn is too special; multiplying by a and reducing modulo m does not
completely disguise the sequence a1, a2, . . . , an . The system can be made somewhat
more secure by iterating the modular multiplication method with different values of a
and m, so that the public and private sequences differ by several transformations. But
even this construction was successfully broken in 1985. Although most variations
of the Merkle-Hellman scheme have been shown to be insecure, there are a few that
have, so far, resisted attack.

PROBLEMS 10.2

1. Obtain all solutions of the knapsack problem

21 = 2x1 + 3x2 + 5x3 + 7x4 + 9x5 + 11x6

2. Determine which of the sequences below are superincreasing:

(a) 3, 13, 20, 37, 81.
(b) 5, 13, 25, 42, 90.
(c) 7, 27, 47, 97, 197, 397.

3. Find the unique solution of each of the following superincreasing knapsack problems:

(a) 118 = 4x1 + 5x2 + 10x3 + 20x4 + 41x5 + 99x6.
(b) 51 = 3x1 + 5x2 + 9x3 + 18x4 + 37x5.
(c) 54 = x1 + 2x2 + 5x3 + 9x4 + 18x5 + 40x6.

4. Consider a sequence of positive integers a1, a2, . . . , an , where ai+1 > 2ai for i = 1,
2, . . . , n − 1. Show that the sequence is superincreasing.

5. A user of the knapsack cryptosystem has the sequence 49, 32, 30, 43 as a listed encryption
key. If the user’s private key involves the modulus m = 50 and multiplier a = 33,
determine the secret superincreasing sequence.

6. The ciphertext message produced by the knapsack cryptosystem employing the super-
increasing sequence 1, 3, 5, 11, 35, modulus m = 73, and multiplier a = 5 is 55, 15,
124, 109, 25, 34. Obtain the plaintext message.

[Hint: Note that 5 · 44 ≡ 1 (mod 73).]

7. A user of the knapsack cryptosystem has a private key consisting of the superincreasing
sequence 2, 3, 7, 13, 27, modulus m = 60, and multiplier a = 7.

(a) Find the user’s listed public key.
(b) With the aid of the public key, encrypt the message SEND MONEY.

10.3 AN APPLICATION OF PRIMITIVE
ROOTS TO CRYPTOGRAPHY

Most modern cryptographic schemes rely on the presumed difficulty of solving some
particular number theoretic problem within a reasonable length of time. For instance,
the security underlying the widely used RSA cryptosystem discussed in Section
10.1 is the sheer effort required to factor large numbers. In 1985, Taher ElGamal
introduced a method of encrypting messages based on a version of the so-called
discrete logarithm problem: that is, the problem of finding the power 0 < x < φ(n),
if it exists, which satisfies the congruence r x ≡ y (mod n) for given r , y, and n. The
exponent x is said to be the discrete logarithm of y to the base r , modulo n. The
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advantage of requiring that the base r be a primitive root of prime number n is the
assurance that y will always have a well-defined discrete logarithm. The logarithm
could be found by exhaustive search; that is, by calculating the successive powers of
r until y ≡ r x (mod n) is reached. Of course, this would generally not be practical
for a large modulus n of several hundred digits.

Example 8.4 indicates that, say, the discrete logarithm of 7 to the base 2 modulo
13 is 11; expressed otherwise, 11 is the smallest positive integer x for which 2x ≡
7 (mod 13). In that example, we used the classical notation 11 = ind27 (mod 13)
and spoke of 11 as being the index of 7, rather than employing the more current
terminology.

The ElGamal cryptosystem, like the RSA system, requires that each user possess
both a public and a private (secret) key. The means needed to transmit a ciphered
message between parties is announced openly, even published in a directory. How-
ever, deciphering can be done only by the intended recipient using a private key.
Because knowledge of the public key and the method of encipherment is not suffi-
cient to discover the other key, confidential information can be communicated over
an insecure channel.

A typical user of this system begins by selecting a prime number p along with
one of its primitive roots r . Then an integer k, where 2 ≤ k ≤ p − 2, is randomly
chosen to serve as the secret key; thereafter,

a ≡ rk (mod p) 0 ≤ a ≤ p − 1

is calculated. The triple of integers (p, r , a) becomes the person’s public key, made
available to all others for cryptographic purposes. The value of the exponent k
is never revealed. For an unauthorized party to discover k would entail solving a
discrete logarithm problem that would be nearly intractable for large values of a
and p.

Before looking at the enciphering procedure, we illustrate the selection of the
public key.

Example 10.8. Suppose that an individual begins by picking the prime p = 113 and
its smallest primitive root r = 3. The choice k = 37 is then made for the integer
satisfying 2 ≤ k ≤ 111. It remains to calculate a ≡ 337 (mod 113). The exponenti-
ation can be readily accomplished by the technique of repeated squaring, reducing
modulo 113 at each step:

31 ≡ 3 (mod 113) 38 ≡ 7 (mod 113)
32 ≡ 9 (mod 113) 316 ≡ 49 (mod 113)
34 ≡ 81 (mod 113) 332 ≡ 28 (mod 113)

and so

a = 337 = 31 · 34 · 332 ≡ 3 · 81 · 28 ≡ 6304 ≡ 24 (mod 113)

The triple (113, 3, 24) serves as the public key, while the integer 37 becomes the secret
deciphering key.

Here is how ElGamal encryption works. Assume that a message is to be sent
to someone who has public key (p, r, a) and also the corresponding private key k.
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The transmission is a string of integers smaller than p. Thus, the literal message is
first converted to its numerical equivalent M by some standard convention such as
letting a = 00, b = 01, . . . , z = 25. If M ≥ p, then M is split into successive blocks,
each block containing the same (even) number of digits. It may be necessary to add
extra digits (say, 25 = z), to fill out the final block.

The blocks of digits are encrypted separately. If B denotes the first block, then
the sender—who is aware of the recipient’s public key—arbitrarily selects an integer
2 ≤ j ≤ p − 2 and computes two values:

C1 ≡ r j (mod p) and C2 ≡ Ba j (mod p), 0 ≤ C1, C2 ≤ p − 1

The numerical ciphertext associated with the block B is the pair of integers (C1, C2).
It is possible, in case greater security is needed, for the choice of j to be changed
from block to block.

The recipient of the ciphertext can recover the block B by using the secret
key k. All that needs to be done is to evaluate first C p−1−k

1 (mod p) and then
P ≡ C2C p−1−k

1 (mod p); for

P ≡ C2C p−1−k
1 ≡ (Ba j )(r j )

p−1−k

≡ B(rk)
j
(r j(p−1)− jk)

≡ B(r p−1)
j

≡ B (mod p)

where the final congruence results from the Fermat identity r p−1 ≡ 1 (mod p).
The main point is that the decryption can be carried out by someone who knows the
value of k.

Let us work through the steps of the encryption algorithm, using a reasonably
small prime number for simplicity.

Example 10.9. Assume that the user wishes to deliver the message

SELL NOW

to a person who has the secret key k = 15 and public encryption key (p, r, a) =
(43, 3, 22), where 22 ≡ 315 (mod 43). The literal plaintext is first converted to the
string of digits

M = 18041111131422

To create the ciphertext, the sender selects an integer j satisfying 2 ≤ j ≤ 41, perhaps
j = 23, and then calculates

r j = 323 ≡ 34 (mod 43) and a j = 2223 ≡ 32 (mod 43)

Thereafter, the product a j B ≡ 32B (mod 43) is computed for each two-digit block B
of M. The initial block, for instance, is encrypted as 32 · 18 ≡ 17 (mod 43). The entered
digital message M is transformed in this way into a new string

M ′ = 17420808291816

The ciphertext that goes forward takes the form

(34, 17) (34, 42) (34, 08) (34, 08) (34, 29) (34, 18) (34, 16)
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On the arrival of the message, the recipient uses the secret key to obtain

(r j )
p−1−k ≡ 3427 ≡ 39 (mod 43)

Each second entry in the ciphertext pairs is decrypted on multiplication by this last
value. The first letter, S, in the sender’s original message would be recovered from the
congruence 18 ≡ 39 · 17 (mod 43), and so on.

An important aspect of a cryptosystem should be its ability to confirm the
integrity of a message; because everyone knows how to send a message, the recipient
must be sure that the encryption was really issued by an authorized person. The usual
method of protecting against possible third-party forgeries is for the person sending
the message to have a digital “signature,” the electronic analog of a handwritten
signature. It should be difficult to tamper with the digital signature, but its authenticity
should be easy to recognize. Unlike a handwritten signature, it should be possible
to vary a digital signature from one communication to another.

A feature of the ElGamal cryptosystem is an efficient procedure for authenti-
cating messages. Consider a user of the system who has public key (p, r, a), private
key k, and encrypted message M . The first step toward supplying a signature is to
choose an integer 1 ≤ j ≤ p − 1 where gcd ( j, p − 1) = 1. Taking a piece of the
plaintext message M—for instance, the first block B—the user next computes

c ≡ r j (mod p), 0 ≤ j ≤ p − 1

and then obtains a solution of the linear congruence

jd + kc ≡ B (mod p − 1), 0 ≤ d ≤ p − 2

The solution d can be found using the Euclidean algorithm. The pair of integers (c, d)
is the required digital signature appended to the message. It can be created only by
someone aware of the private key k, the random integer j , and the message M .

The recipient uses the sender’s public key (p, r, a) to confirm the purported
signature. It is simply a matter of calculating the two values

V1 ≡ accd (mod p), V2 ≡ r B (mod p), 0 ≤ V1, V2 ≤ p − 1

The signature is accepted as legitimate when V1 = V2. That this equality should
take place follows from the congruence

V1 ≡ accd ≡ (rk)c(r j )d

≡ rkc+ jd

≡ r B ≡ V2 (mod p)

Notice that the personal identification does not require the recipient to know the
sender’s private key k.

Example 10.10. The person having public key (43, 3, 22) and private key k = 15 wants
to sign and reply to the message SELL NOW. This is carried out by first choosing an
integer 0 ≤ j ≤ 42 with gcd( j, 42) = 1, say j = 25. If the first block of the encoded
reply is B = 13, then the person calculates

c ≡ 325 ≡ 5 (mod 43)
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and thereafter solves the congruence

25d ≡ 13 − 5 · 15 (mod 42)

for the value d ≡ 16 (mod 42). The digital signature attached to the reply consists of
the pair (5, 16). On its arrival, the signature is confirmed by checking the equality of
the integers V1 and V2:

V1 ≡ 225 · 516 ≡ 39 · 40 ≡ 12 (mod 43)
V2 ≡ 313 ≡ 12 (mod 43)

PROBLEMS 10.3

1. The message REPLY TODAY is to be encrypted in the ElGamal cryptosystem and
forwarded to a user with public key (47, 5, 10) and private key k = 19.
(a) If the random integer chosen for encryption is j = 13, determine the ciphertext.
(b) Indicate how the ciphertext can be decrypted using the recipient’s private key.

2. Suppose that the following ciphertext is received by a person having ElGamal public
key (71, 7, 32) and private key k = 30:

(56, 45) (56, 38) (56, 29) (56, 03) (56, 67)
(56, 05) (56, 27) (56, 31) (56, 38) (56, 29)

Obtain the plaintext message.
3. The message NOT NOW (numerically 131419131422) is to be sent to a user of the

ElGamal system who has public key (37, 2, 18) and private key k = 17. If the integer
j used to construct the ciphertext is changed over successive four-digit blocks from
j = 13 to j = 28 to j = 11, what is the encrypted message produced?

4. Assume that a person has ElGamal public key (2633, 3, 1138) and private key k = 965.
If the person selects the random interger j = 583 to encrypt the message BEWARE OF
THEM, obtain the resulting ciphertext.
[Hint: 3583 ≡ 1424 (mod 2633), 1138583 ≡ 97 (mod 2633).]

5. (a) A person with public key (31, 2, 22) and private key k = 17 wishes to sign a message
whose first plaintext block is B = 14. If 13 is the integer chosen to construct the
signature, obtain the signature produced by the ElGamal algorithm.

(b) Confirm the validity of this signature.
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CHAPTER

11
NUMBERS OF SPECIAL FORM

In most sciences one generation tears down what another has built and what
one has established another undoes. In Mathematics alone each generation

builds a new story to the old structure.
HERMANN HANKEL

11.1 MARIN MERSENNE

The earliest instance we know of a regular gathering of mathematicians is the group
held together by an unlikely figure—the French priest Father Marin Mersenne (1588–
1648). The son of a modest farmer, Mersenne received a thorough education at
the Jesuit College of La Flèche. In 1611, after two years studying theology at the
Sorbonne, he joined the recently founded Franciscan Order of Minims. Mersenne
entered the Minim Convent in Paris in 1619 where, except for short trips, he remained
for the rest of his life.

Mersenne lamented the absence of any sort of formal organization to which
scholars might resort. He responded to this need by making his own rooms at the
Minim Convent available as a meeting place for those drawn together by common
interests, eager to discuss their respective discoveries and hear of similar activity else-
where. The learned circle he fostered—composed mainly of Parisian mathematicians
and scientists but augmented by colleagues passing through the city—seems to have
met almost continuously from 1635 until Mersenne’s death in 1648. At one of these
meetings, the precocious 14-year-old Blaise Pascal distributed his handbill Essay
pour les coniques containing his famous “mystic hexagram” theorem; Descartes
could only grumble that he could not “pretend to be interested in the work of a boy.”

219
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After Mersenne’s death, the august sessions continued to be held at private homes in
and around Paris, including Pascal’s. It is customary to regard the Académie Royale
des Sciences, chartered in 1666, as the more or less direct successor of these informal
gatherings.

From 1625 onward, Mersenne made it his business to become acquainted with
everyone of note in the European intellectual world. He carried out this plan through
an elaborate network of correspondence which lasted over 20 years. In essence,
he became an individual clearinghouse of mathematical and scientific information,
trading news of current advances in return for more news. For instance, in 1645
Mersenne visited the physicist Torricelli in Italy, and made widely known Torricelli’s
use of a rising column of mercury in a vacuum tube to demonstrate atmospheric
pressure. Mersenne’s communications, dispersed over the Continent by passing
from hand to hand, were the vital link between isolated members of the emerging
scientific community at a time when the publication of learned journals still lay in the
future.

After Mersenne’s death, letters from 78 correspondents scattered over Western
Europe were found in his Parisian quarters. Among his correspondents were Huygens
in Holland, Torricelli and Galileo in Italy, Pell and Hobbes in England, and the
Pascals, father and son, in France. He had also served as the main channel of commu-
nication between the French number theorists Fermat, Frénicle, and Descartes; their
exchanged letters determined the sorts of problems these three chose to investigate.

Mersenne was not himself a serious contributor to the subject, rather a remark-
able interested person prodding others with questions and conjectures. His own
queries tended to be rooted in the classical Greek concern with divisibility. For in-
stance, in a letter written in 1643, he sent the number 100895598169 to Fermat with
a request for its factors. (Fermat responded almost immediately that it is the product
of the two primes 898423 and 112303.) On another occasion he asked for a number
that has exactly 360 divisors. Mersenne was also interested in whether or not there
exists a so-called perfect number with 20 or 21 digits, the underlying question really
being to find out whether 237 − 1 is prime. Fermat discovered that the only prime
divisors of 237 − 1 are of the form 74k + 1 and that 223 is such a factor, thereby
supplying a negative answer to Mersenne.

Mersenne was the author of various works dealing with the mathematical sci-
ences, including Synopsis Mathematica (1626), Traité de l’Harmonie Universelle
(1636–1637), and Universae Geometriae Synopsis (1644). A believer in the new
Copernican theory of the earth’s motion, he was virtually Galileo’s representative
in France. He brought out (1634), under the title Les Mécaniques de Galilée, a ver-
sion of Galileo’s early lectures on mechanics; and, in 1639, a year after its original
publication, he translated Galileo’s Discorsi—a treatise analyzing projectile motion
and gravitational acceleration—into French. As Italian was little understood abroad,
Mersenne was instrumental in popularizing Galileo’s investigations. It is notable
that he did this as a faithful member of a Catholic religious order at the height
of the Church’s hostility to Galileo and its condemnation of his writings. Perhaps
Mersenne’s greatest contribution to the scientific movement lay in his rejection of
the traditional interpretation of natural phenomena, which had stressed the action of
“occult” powers, by insisting instead upon purely rational explanations.
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Marin Mersenne
(1588–1648)

(David Eugene Smith Collection, Rare Book and
Manuscript Library, Columbia University)

11.2 PERFECT NUMBERS

The history of the theory of numbers abounds with famous conjectures and open
questions. The present chapter focuses on some of the intriguing conjectures asso-
ciated with perfect numbers. A few of these have been satisfactorily answered, but
most remain unresolved; all have stimulated the development of the subject as a
whole.

The Pythagoreans considered it rather remarkable that the number 6 is equal to
the sum of its positive divisors, other than itself:

6 = 1 + 2 + 3

The next number after 6 having this feature is 28; for the positive divisors of 28 are
found to be 1, 2, 4, 7, 14, and 28, and

28 = 1 + 2 + 4 + 7 + 14

In line with their philosophy of attributing mystical qualities to numbers,
the Pythagoreans called such numbers “perfect.” We state this precisely in
Definition 11.1.

Definition 11.1. A positive integer n is said to be perfect if n is equal to the sum of all
its positive divisors, excluding n itself.

The sum of the positive divisors of an integer n, each of them less than n, is given
by σ (n) − n. Thus, the condition “n is perfect” amounts to asking that σ (n) − n = n,
or equivalently, that

σ (n) = 2n

For example, we have

σ (6) = 1 + 2 + 3 + 6 = 2 · 6
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and

σ (28) = 1 + 2 + 4 + 7 + 14 + 28 = 2 · 28

so that 6 and 28 are both perfect numbers.
For many centuries, philosophers were more concerned with the mystical or

religious significance of perfect numbers than with their mathematical properties.
Saint Augustine explains that although God could have created the world all at once,
He preferred to take 6 days because the perfection of the work is symbolized by
the (perfect) number 6. Early commentators on the Old Testament argued that the
perfection of the universe is represented by 28, the number of days it takes the
moon to circle the earth. In the same vein, the 8th century theologian Alcuin of York
observed that the whole human race is descended from the 8 souls on Noah’s Ark and
that this second Creation is less perfect than the first, 8 being an imperfect number.

Only four perfect numbers were known to the ancient Greeks. Nicomachus in
his Introductio Arithmeticae (circa 100 A.D.) lists

P1 = 6 P2 = 28 P3 = 496 P4 = 8128

He says that they are formed in an “orderly” fashion, one among the units, one among
the tens, one among the hundreds, and one among the thousands (that is, less than
10,000). Based on this meager evidence, it was conjectured that

1. The nth perfect number Pn contains exactly n digits; and

2. The even perfect numbers end, alternately, in 6 and 8.

Both assertions are wrong. There is no perfect number with 5 digits; the next
perfect number (first given correctly in an anonymous 15th century manuscript) is

P5 = 33550336

Although the final digit of P5 is 6, the succeeding perfect number, namely,

P6 = 8589869056

also ends in 6, not 8 as conjectured. To salvage something in the positive direction,
we shall show later that the even perfect numbers do always end in 6 or 8—but not
necessarily alternately.

If nothing else, the magnitude of P6 should convince the reader of the rarity of
perfect numbers. It is not yet known whether there are finitely many or infinitely
many of them.

The problem of determining the general form of all perfect numbers dates back
almost to the beginning of mathematical time. It was partially solved by Euclid when
in Book IX of the Elements he proved that if the sum

1 + 2 + 22 + 23 + · · · + 2k−1 = p

is a prime number, then 2k−1 p is a perfect number (of necessity even). For instance,
1 + 2 + 4 = 7 is a prime; hence, 4 · 7 = 28 is a perfect number. Euclid’s argument
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makes use of the formula for the sum of a geometric progression

1 + 2 + 22 + 23 + · · · + 2k−1 = 2k − 1

which is found in various Pythagorean texts. In this notation, the result reads as
follows: If 2k − 1 is prime (k > 1), then n = 2k−1(2k − 1) is a perfect number.
About 2000 years after Euclid, Euler took a decisive step in proving that all even
perfect numbers must be of this type. We incorporate both these statements in our
first theorem.

Theorem 11.1. If 2k − 1 is prime (k > 1), then n = 2k−1(2k − 1) is perfect and every
even perfect number is of this form.

Proof. Let 2k − 1 = p, a prime, and consider the integer n = 2k−1 p. Inasmuch as
gcd(2k−1, p) = 1, the multiplicativity of σ (as well as Theorem 6.2) entails that

σ (n) = σ (2k−1 p) = σ (2k−1)σ (p)

= (2k − 1)(p + 1)

= (2k − 1)2k = 2n

making n a perfect number.
For the converse, assume that n is an even perfect number. We may write n as

n = 2k−1m, where m is an odd integer and k ≥ 2. It follows from gcd(2k−1, m) = 1 that

σ (n) = σ (2k−1m) = σ (2k−1)σ (m) = (2k − 1)σ (m)

whereas the requirement for a number to be perfect gives

σ (n) = 2n = 2km

Together, these relations yield

2km = (2k − 1)σ (m)

which is simply to say that (2k − 1) | 2km. But 2k − 1 and 2k are relatively prime,
whence (2k − 1) | m; say, m = (2k − 1)M . Now the result of substituting this value of
m into the last-displayed equation and canceling 2k − 1 is that σ (m) = 2k M . Because
m and M are both divisors of m (with M < m), we have

2k M = σ (m) ≥ m + M = 2k M

leading to σ (m) = m + M . The implication of this equality is that m has only two
positive divisors, to wit, M and m itself. It must be that m is prime and M = 1; in other
words, m = (2k − 1)M = 2k − 1 is a prime number, completing the present proof.

Because the problem of finding even perfect numbers is reduced to the search
for primes of the form 2k − 1, a closer look at these integers might be fruitful. One
thing that can be proved is that if 2k − 1 is a prime number, then the exponent k must
itself be prime. More generally, we have the following lemma.

Lemma. If ak − 1 is prime (a > 0, k ≥ 2), then a = 2 and k is also prime.
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Proof. It can be verified without difficulty that

ak − 1 = (a − 1)(ak−1 + ak−2 + · · · + a + 1)

where, in the present setting,

ak−1 + ak−2 + · · · + a + 1 ≥ a + 1 > 1

Because by hypothesis ak − 1 is prime, the other factor must be 1; that is, a − 1 = 1
so that a = 2.

If k were composite, then we could write k = rs, with 1 < r and 1 < s. Thus,

ak − 1 = (ar )s − 1

= (ar − 1)(ar (s−1) + ar (s−2) + · · · + ar + 1)

and each factor on the right is plainly greater than 1. But this violates the primality of
ak − 1, so that by contradiction k must be prime.

For p = 2, 3, 5, 7, the values 3, 7, 31, 127 of 2p − 1 are primes, so that

2(22 − 1) = 6

22(23 − 1) = 28

24(25 − 1) = 496

26(27 − 1) = 8128

are all perfect numbers.
Many early writers erroneously believed that 2p − 1 is prime for every choice of

the prime number p. But in 1536, Hudalrichus Regius in a work entitled Utriusque
Arithmetices exhibits the correct factorization

211 − 1 = 2047 = 23 · 89

If this seems a small accomplishment, it should be realized that his calculations
were in all likelihood carried out in Roman numerals, with the aid of an abacus (not
until the late 16th century did the Arabic numeral system win complete ascendancy
over the Roman one). Regius also gave p = 13 as the next value of p for which the
expression 2p − 1 is a prime. From this, we obtain the fifth perfect number

212(213 − 1) = 33550336

One of the difficulties in finding further perfect numbers was the unavailability of
tables of primes. In 1603, Pietro Cataldi, who is remembered chiefly for his invention
of the notation for continued fractions, published a list of all primes less than 5150.
By the direct procedure of dividing by all primes not exceeding the square root of a
number, Cataldi determined that 217 − 1 was prime and, in consequence, that

216(217 − 1) = 8589869056

is the sixth perfect number.
A question that immediately springs to mind is whether there are infinitely many

primes of the type 2p − 1, with p a prime. If the answer were in the affirmative,
then there would exist an infinitude of (even) perfect numbers. Unfortunately, this
is another famous unresolved problem.
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This appears to be as good a place as any at which to prove our theorem on the
final digits of even perfect numbers.

Theorem 11.2. An even perfect number n ends in the digit 6 or 8; equivalently, either
n ≡ 6 (mod 10) or n ≡ 8 (mod 10).

Proof. Being an even perfect number, n may be represented as n = 2k−1 (2k − 1),
where 2k − 1 is a prime. According to the last lemma, the exponent k must also be
prime. If k = 2, then n = 6, and the asserted result holds. We may therefore confine
our attention to the case k > 2. The proof falls into two parts, according as k takes the
form 4m + 1 or 4m + 3.

If k is of the form 4m + 1, then

n = 24m(24m+1 − 1)

= 28m+1 − 24m = 2 · 162m − 16m

A straightforward induction argument will make it clear that 16t ≡ 6 (mod 10) for any
positive integer t . Utilizing this congruence, we get

n ≡ 2 · 6 − 6 ≡ 6 (mod 10)

Now, in the case in which k = 4m + 3,

n = 24m+2(24m+3 − 1)

= 28m+5 − 24m+2 = 2 · 162m+1 − 4 · 16m

Falling back on the fact that 16t ≡ 6 (mod 10), we see that

n ≡ 2 · 6 − 4 · 6 ≡ −12 ≡ 8 (mod 10)

Consequently, every even perfect number has a last digit equal to 6 or to 8.

A little more argument establishes a sharper result, namely, that any even perfect
number n = 2k−1(2k − 1) always ends in the digits 6 or 28. Because an integer is
congruent modulo 100 to its last two digits, it suffices to prove that, if k is of the
form 4m + 3, then n ≡ 28 (mod 100). To see this, note that

2k−1 = 24m+2 = 16m · 4 ≡ 6 · 4 ≡ 4 (mod 10)

Moreover, for k > 2, we have 4 | 2k−1, and therefore the number formed by the last
two digits of 2k−1 is divisible by 4. The situation is this: The last digit of 2k−1 is 4,
and 4 divides the last two digits. Modulo 100, the various possibilities are

2k−1 ≡ 4, 24, 44, 64, or 84

But this implies that

2k − 1 = 2 · 2k−1 − 1 ≡ 7, 47, 87, 27, or 67 (mod 100)

whence

n = 2k−1(2k − 1)

≡ 4 · 7, 24 · 47, 44 · 87, 64 · 27, or 84 · 67 (mod 100)

It is a modest exercise, which we bequeath to the reader, to verify that each of the
products on the right-hand side of the last congruence is congruent to 28 modulo 100.
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PROBLEMS 11.2

1. Prove that the integer n = 210(211 − 1) is not a perfect number by showing that
σ (n) �= 2n.
[Hint: 211 − 1 = 23 · 89.]

2. Verify each of the statements below:
(a) No power of a prime can be a perfect number.
(b) A perfect square cannot be a perfect number.
(c) The product of two odd primes is never a perfect number.

[Hint: Expand the inequality (p − 1)(q − 1) > 2 to get pq > p + q + 1.]
3. If n is a perfect number, prove that

∑
d | n 1/d = 2.

4. Prove that every even perfect number is a triangular number.
5. Given that n is an even perfect number, for instance n = 2k−1(2k − 1), show that the

integer n = 1 + 2 + 3 + · · · + (2k − 1) and also that φ(n) = 2k−1(2k−1 − 1).
6. For an even perfect number n > 6, show the following:

(a) The sum of the digits of n is congruent to 1 modulo 9.
[Hint: The congruence 26 ≡ 1 (mod 9) and the fact that any prime p ≥ 5 is of the
form 6k + 1 or 6k + 5 imply that n = 2p−1(2p − 1) ≡ 1 (mod 9).]

(b) The integer n can be expressed as a sum of consecutive odd cubes.
[Hint: Use Section 1.1, Problem 1(e) to establish the identity below for all k ≥ 1:

13 + 33 + 53 + · · · + (2k − 1)3 = 22k−2(22k−1 − 1).]

7. Show that no proper divisor of a perfect number can be perfect.
[Hint: Apply the result of Problem 3.]

8. Find the last two digits of the perfect number

n = 219936(219937 − 1)

9. If σ (n) = kn, where k ≥ 3, then the positive integer n is called a k-perfect number
(sometimes, multiply perfect). Establish the following assertions concerning k-perfect
numbers:
(a) 523776 = 29 · 3 · 11 · 31 is 3-perfect.

30240 = 25 · 33 · 5 · 7 is 4-perfect.
14182439040 = 27 · 34 · 5 · 7 · 112 · 17 · 19 is 5-perfect.

(b) If n is a 3-perfect number and 3 � | n, then 3n is 4-perfect.
(c) If n is a 5-perfect number and 5 � | n, then 5n is 6-perfect.
(d) If 3n is a 4k-perfect number and 3 � | n, then n is 3k-perfect.
For each k, it is conjectured that there are only finitely many k-perfect numbers. The
largest one discovered has 558 digits and is 9-perfect.

10. Show that 120 and 672 are the only 3-perfect numbers of the form n = 2k · 3 · p, where
p is an odd prime.

11. A positive integer n is multiplicatively perfect if n is equal to the product of all its positive
divisors, excluding n itself; in other words, n2 = ∏

d | n d . Find all multiplicatively perfect
numbers.
[Hint: Notice that n2 = nτ (n)/2.]

12. (a) If n > 6 is an even perfect number, prove that n ≡ 4 (mod 6).
[Hint: 2p−1 ≡ 1 (mod 3) for an odd prime p.]

(b) Prove that if n �= 28 is an even perfect number, then n ≡ 1 or −1 (mod 7).
13. For any even perfect number n = 2k−1(2k − 1), show that 2k | σ (n2) + 1.
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14. Numbers n such that σ (σ (n)) = 2n are called superperfect numbers.
(a) If n = 2k with 2k+1 − 1 a prime, prove that n is superperfect; hence, 16 and 64 are

superperfect.
(b) Find all even perfect numbers n = 2k−1(2k − 1) which are also superperfect.

[Hint: First establish the equality σ (σ (n)) = 2k(2k+1 − 1).]
15. The harmonic mean H (n) of the divisors of a positive integer n is defined by the formula

1

H (n)
= 1

τ (n)

∑
d | n

1

d

Show that if n is a perfect number, then H (n) must be an integer.
[Hint: Observe that H (n) = nτ (n)/σ (n).]

16. The twin primes 5 and 7 are such that one half their sum is a perfect number. Are there
any other twin primes with this property?
[Hint: Given the twin primes p and p + 2, with p > 5, 1

2 (p + p + 2) = 6k for some
k > 1.]

17. Prove that if 2k − 1 is prime, then the sum

2k−1 + 2k + 2k+1 + · · · + 22k−2

will yield a perfect number. For instance, 23 − 1 is prime and 22 + 23 + 24 = 28, which
is perfect.

18. Assuming that n is an even perfect number, say n = 2k−1(2k − 1), prove that the product
of the positive divisors of n is equal to nk ; in symbols,∏

d | n

d = nk

19. If n1, n2, . . . , nr are distinct even perfect numbers, establish that

φ(n1n2 · · · nr ) = 2r−1φ(n1)φ(n2) · · · φ(nr )

[Hint: See Problem 5.]
20. Given an even perfect number n = 2k−1(2k − 1), show that

φ(n) = n − 22k−2

11.3 MERSENNE PRIMES AND AMICABLE NUMBERS

It has become traditional to call numbers of the form

Mn = 2n − 1 n ≥ 1

Mersenne numbers after Father Marin Mersenne who made an incorrect but provoca-
tive assertion concerning their primality. Those Mersenne numbers that happen to
be prime are said to be Mersenne primes. By what we proved in Section 11.2, the
determination of Mersenne primes Mn—and, in turn, of even perfect numbers—is
narrowed down to the case in which n is itself prime.

In the preface of his Cogitata Physica-Mathematica (1644), Mersenne stated
that Mp is prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 and composite for
all other primes p < 257. It was obvious to other mathematicians that Mersenne
could not have tested for primality all the numbers he had announced; but neither
could they. Euler verified (1772) that M31 was prime by examining all primes up to
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46339 as possible divisors, but M67, M127, and M257 were beyond his technique; in
any event, this yielded the eighth perfect number

230(231 − 1) = 2305843008139952128

It was not until 1947, after tremendous labor caused by unreliable desk calcu-
lators, that the examination of the prime or composite character of Mp for the 55
primes in the range p ≤ 257 was completed. We know now that Mersenne made
five mistakes. He erroneously concluded that M67 and M257 are prime and excluded
M61, M89, and M107 from his predicted list of primes. It is rather astonishing that
over 300 years were required to set the good friar straight.

All the composite numbers Mn with n ≤ 257 have now been completely fac-
tored. The most difficult factorization, that of M251, was obtained in 1984 after a
32-hour search on a supercomputer.

An historical curiosity is that, in 1876, Edouard Lucas worked a test whereby
he was able to prove that the Mersenne number M67 was composite; but he could
not produce the actual factors.

Lucas was the first to devise an efficient “primality test”; that is, a procedure that
guarantees whether a number is prime or composite without revealing its factors, if
any. His primality criteria for the Mersenne and Fermat numbers were developed
in a series of 13 papers published between January of 1876 and January of 1878.
Despite an outpouring of research, Lucas never obtained a major academic position
in his native France, instead spending his career in various secondary schools. A
freak, unfortunate accident led to Lucas’s death from infection at the early age of
49: a piece of a plate dropped at a banquet flew up and gashed his cheek.

At the October 1903 meeting of the American Mathematical Society, the Ameri-
can mathematician Frank Nelson Cole had a paper on the program with the somewhat
unassuming title “On the Factorization of Large Numbers.” When called upon to
speak, Cole walked to a board and, saying nothing, proceeded to raise the integer 2 to
the 67th power; then he carefully subtracted 1 from the resulting number and let the
figure stand. Without a word he moved to a clean part of the board and multiplied,
longhand, the product

193,707,721 × 761,838,257,287

The two calculations agreed. The story goes that, for the first and only time on record,
this venerable body rose to give the presenter of a paper a standing ovation. Cole took
his seat without having uttered a word, and no one bothered to ask him a question.
(Later, he confided to a friend that it took him 20 years of Sunday afternoons to find
the factors of M67.)

In the study of Mersenne numbers, we come upon a strange fact: when each of
the first four Mersenne primes (namely, 3, 7, 31, and 127) is substituted for n in the
formula 2n − 1, a higher Mersenne prime is obtained. Mathematicians had hoped
that this procedure would give rise to an infinite set of Mersenne primes; in other
words, the conjecture was that if the number Mn is prime, then MMn is also a prime.
Alas, in 1953 a high-speed computer found the next possibility

MM13 = 2M13 − 1 = 28191 − 1

(a number with 2466 digits) to be composite.
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There are various methods for determining whether certain special types of
Mersenne numbers are prime or composite. One such test is presented next.

Theorem 11.3. If p and q = 2p + 1 are primes, then either q | Mp or q | Mp + 2, but
not both.

Proof. With reference to Fermat’s theorem, we know that

2q−1 − 1 ≡ 0 (mod q)

and, factoring the left-hand side, that

(2(q−1)/2 − 1)(2(q−1)/2 + 1) = (2p − 1)(2p + 1)

≡ 0 (mod q)

What amounts to the same thing:

Mp(Mp + 2) ≡ 0 (mod q)

The stated conclusion now follows directly from Theorem 3.1. We cannot have both
q | Mp and q | Mp + 2, for then q | 2, which is impossible.

A single application should suffice to illustrate Theorem 11.3: if p = 23, then
q = 2p + 1 = 47 is also a prime, so that we may consider the case of M23. The
question reduces to one of whether 47 | M23 or, to put it differently, whether 223 ≡
1 (mod 47). Now, we have

223 = 23(25)4 ≡ 23(−15)4(mod 47)

But

(−15)4 = (225)2 ≡ (−10)2 ≡ 6 (mod 47)

Putting these two congruences together, we see that

223 ≡ 23 · 6 ≡ 48 ≡ 1 (mod 47)

whence M23 is composite.
We might point out that Theorem 11.3 is of no help in testing the primality of

M29, say; in this instance, 59 � | M29, but instead 59 | M29 + 2.
Of the two possibilities q | Mp or q | Mp + 2, is it reasonable to ask: What

conditions on q will ensure that q | Mp? The answer is to be found in Theorem 11.4.

Theorem 11.4. If q = 2n + 1 is prime, then we have the following:

(a) q | Mn , provided that q ≡ 1 (mod 8) or q ≡ 7 (mod 8).
(b) q | Mn + 2, provided that q ≡ 3 (mod 8) or q ≡ 5 (mod 8).

Proof. To say that q | Mn is equivalent to asserting that

2(q−1)/2 = 2n ≡ 1 (mod q)

In terms of the Legendre symbol, the latter condition becomes the requirement that
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(2/q) = 1. But according to Theorem 9.6, (2/q) = 1 when we have q ≡ 1 (mod 8) or
q ≡ 7 (mod 8). The proof of (b) proceeds along similar lines.

Let us consider an immediate consequence of Theorem 11.4.

Corollary. If p and q = 2p + 1 are both odd primes, with p ≡ 3 (mod 4), then q | Mp.

Proof. An odd prime p is either of the form 4k + 1 or 4k + 3. If p = 4k + 3,
then q = 8k + 7 and Theorem 11.4 yields q | Mp. In the case in which p = 4k + 1,
q = 8k + 3 so that q � | Mp.

The following is a partial list of those prime numbers p ≡ 3 (mod 4) where
q = 2p + 1 is also prime: p = 11, 23, 83, 131, 179, 191, 239, 251. In each instance,
Mp is composite.

Exploring the matter a little further, we next tackle two results of Fermat that
restrict the divisors of Mp. The first is Theorem 11.5.

Theorem 11.5. If p is an odd prime, then any prime divisor of Mp is of the form
2kp + 1.

Proof. Let q be any prime divisor of Mp, so that 2p ≡ 1 (mod q). If 2 has order k
modulo q (that is, if k is the smallest positive integer that satisfies 2k ≡ 1 (mod q)), then
Theorem 8.1 tells us that k | p. The case k = 1 cannot arise; for this would imply that
q | 1, an impossible situation. Therefore, because both k | p and k > 1, the primality of
p forces k = p.

In compliance with Fermat’s theorem, we have 2q−1 ≡ 1 (mod q), and therefore,
thanks to Theorem 8.1 again, k | q − 1. Knowing that k = p, the net result is p | q − 1.
To be definite, let us put q − 1 = pt ; then q = pt + 1. The proof is completed by
noting that if t were an odd integer, then q would be even and a contradiction occurs.
Hence, we must have q = 2kp + 1 for some choice of k, which gives q the required
form.

As a further sieve to screen out possible divisors of Mp, we cite the following
result.

Theorem 11.6. If p is an odd prime, then any prime divisor q of Mp is of the form
q ≡ ±1 (mod 8).

Proof. Suppose that q is a prime divisor of Mp, so that 2p ≡ 1 (mod q). According to
Theorem 11.5, q is of the form q = 2kp + 1 for some integer k. Thus, using Euler’s
criterion, (2/q) ≡ 2(q−1)/2 ≡ 1 (mod q), whence (2/q) = 1. Theorem 9.6 can now be
brought into play again to conclude that q ≡ ±1 (mod 8).

For an illustration of how these theorems can be used, one might look at M17.
Those integers of the form 34k + 1 that are less than 362 <

√
M17 are

35, 69, 103, 137, 171, 205, 239, 273, 307, 341
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Because the smallest (nontrivial) divisor of M17 must be prime, we need only consider
the primes among the foregoing 10 numbers; namely,

103, 137, 239, 307

The work can be shortened somewhat by noting that 307 �≡ ±1 (mod 8), and therefore
we may delete 307 from our list. Now either M17 is prime or one of the three remaining
possibilities divides it. With a little calculation, we can check that M17 is divisible
by none of 103, 137, and 239; the result: M17 is prime.

After giving the eighth perfect number 230(231 − 1), Peter Barlow, in his book
Theory of Numbers (published in 1811), concludes from its size that it “is the greatest
that ever will be discovered; for as they are merely curious, without being useful, it is
not likely that any person will ever attempt to find one beyond it.” The very least that
can be said is that Barlow underestimated obstinate human curiosity. Although the
subsequent search for larger perfect numbers provides us with one of the fascinating
chapters in the history of mathematics, an extended discussion would be out of place
here.

It is worth remarking, however, that the first 12 Mersenne primes (hence, 12
perfect numbers) have been known since 1914. The 11th in order of discovery,
namely, M89, was the last Mersenne prime disclosed by hand calculation; its primality
was verified by both Powers and Cunningham in 1911, working independently and
using different techniques. The prime M127 was found by Lucas in 1876 and for the
next 75 years was the largest number actually known to be a prime.

Calculations whose mere size and tedium repel the mathematician are just grist
for the mill of electronic computers. Starting in 1952, 22 additional Mersenne primes
(all huge) have come to light. The 25th Mersenne prime, M21701, was discovered in
1978 by two 18-year-old high school students, Laura Nickel and Curt Noll, using
440 hours on a large computer. A few months later, Noll confirmed that M23209 is
also prime. With the advent of much faster computers, even this record prime did
not stand for long.

During the last 10 years, a flurry of computer activity confirmed the primality of
eight more Mersenne numbers, each in turn becoming the largest number currently
known to be prime. (In the never-ending pursuit of bigger and bigger primes, the
record holder has usually been a Mersenne number.) Forty-six Mersenne primes
have been identified. The larger of a pair more recently discovered is M43112609,
discovered in 2008. It has 12978189 decimal digits, nearly three million more than
the previous largest known prime, the 9808358-digit M32582657. The two-year search
for M43112609 used the spare time of several hundred thousand volunteers and their
computers, each assigned a different set of candidates to test for primality. The
newest champion prime gave rise to the 41st even perfect number

P45 = 243112608(243112609 − 1)

an immense number of 25956377 digits.
It is not likely that every prime in the vast expanse p < 43112609 has been

tested to see if Mp is prime. One should be wary, for in 1989 a systematic computer
search found the overlooked Mersenne prime M110503 lurking between M86243 and
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M216091. What is more probable is that enthusiasts with the time and inclination will
forge on through higher values to new records.

An algorithm frequently used for testing the primality of Mp is the Lucas-Lehmer
test. It relies on the inductively defined sequence

S1 = 4 Sk+1 = S2
k − 2 k ≥ 1

Thus, the sequence begins with the values 4, 14, 194, 37634, . . . . The basic theorem,
as perfected by Derrick Lehmer in 1930 from the pioneering results of Lucas, is
this: For p > 2, Mp is prime if and only if Sp−1 ≡ 0 (mod Mp). An equivalent
formulation is that Mp is prime if and only if Sp−2 ≡ ±2(p+1)/2 (mod Mp).

A simple example is provided by the Mersenne number M7 = 27 − 1 = 127.
Working modulo 127, the computation runs as follows:

S1 ≡ 4 S2 ≡ 14 S3 ≡ 67 S4 ≡ 42 S5 ≡ −16 S6 ≡ 0

This establishes that M7 is prime.
The largest of the numbers on Mersenne’s “original” list, the 78-digit M257,

was found to be composite in 1930 when Lehmer succeeded in showing that
S256 �≡ 0 (mod 257); this arithmetic achievement was announced in print in 1930,
although no factor of the number was known. In 1952, the National Bureau of Stan-
dards Western Automatic Computer (SWAC) confirmed Lehmer’s efforts of 20 years
earlier. The electronic computer accomplished in 68 seconds what had taken Lehmer
over 700 hours using a calculating machine. The smallest prime factor of M257,
namely,

535006138814359

was obtained in 1979 and the remaining two factors exhibited in 1980, 50 years after
the composite nature of the number had been revealed.

We have listed in the section of Tables the 47 Mersenne primes known so far,
with the number of digits in each and its approximate date of discovery.

Most mathematicians believe that there are infinitely many Mersenne primes, but
a proof of this seems hopelessly beyond reach. Known Mersenne primes Mp clearly
become more scarce as p increases. It has been conjectured that about two primes
Mp should be expected for all primes p in an interval x < p < 2x ; the numerical
evidence tends to support this.

One of the celebrated problems of number theory is whether there exist any
odd perfect numbers. Although no odd perfect number has been produced thus far,
nonetheless, it is possible to find certain conditions for the existence of odd perfect
numbers. The oldest of these we owe to Euler, who proved that if n is an odd perfect
number, then

n = pαq2β1
1 q2β2

2 · · · q2βr
r

where p, q1, . . . , qr are distinct odd primes and p ≡ α ≡ 1 (mod 4). In 1937,
Steuerwald showed that not all βi ’s can be equal to 1; that is, if n = pαq2

1 q2
2 · · · q2

r
is an odd number with p ≡ α ≡ 1 (mod 4), then n is not perfect. Four years later,
Kanold established that not all βi ’s can be equal to 2, nor is it possible to have one βi
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equal to 2 and all the others equal to 1. The last few years have seen further progress:
Hagis and McDaniel (1972) found that it is impossible to have βi = 3 for all i .

With these comments out of the way, let us prove Euler’s result.

Theorem 11.7 Euler. If n is an odd perfect number, then

n = pk1
1 p2 j2

2 · · · p2 jr
r

where the pi ’s are distinct odd primes and p1 ≡ k1 ≡ 1 (mod 4).

Proof. Let n = pk1
1 pk2

2 · · · pkr
r be the prime factorization of n. Because n is perfect, we

can write

2n = σ (n) = σ (pk1
1 )σ (pk2

2 ) · · · σ (pkr
r )

Being an odd integer, either n ≡ 1 (mod 4) or n ≡ 3 (mod 4); in any event, 2n ≡ 2
(mod 4). Thus, σ (n) = 2n is divisible by 2, but not by 4. The implication is that one
of the σ (pki

i ), say σ (pk1
1 ), must be an even integer (but not divisible by 4), and all the

remaining σ (pki
i )’s are odd integers.

For a given pi , there are two cases to be considered: pi ≡ 1 (mod 4) and pi ≡ 3
(mod 4). If pi ≡ 3 ≡ −1 (mod 4), we would have

σ (pki
i ) = 1 + pi + p2

i + · · · + pki
i

≡ 1 + (−1) + (−1)2 + · · · + (−1)ki (mod 4)

≡
{

0 (mod 4) if ki is odd
1 (mod 4) if ki is even

Because σ (pk1
1 ) ≡ 2 (mod 4), this tells us that p1 �≡ 3 (mod 4) or, to put it affirma-

tively, p1 ≡ 1 (mod 4). Furthermore, the congruence σ (pki
i ) ≡ 0 (mod 4) signifies that

4 divides σ (pk1
i ), which is not possible. The conclusion: if pi ≡ 3 (mod 4), where

i = 2, . . . , r , then its exponent ki is an even integer.
Should it happen that pi ≡ 1 (mod 4)—which is certainly true for i = 1—then

σ (pki
i ) = 1 + pi + p2

i + · · · + pki
i

≡ 1 + 11 + 12 + · · · + 1ki (mod 4)

≡ ki + 1 (mod 4)

The condition σ (pk1
1 ) ≡ 2 (mod 4) forces k1 ≡ 1 (mod 4). For the other values of i , we

know that σ (pki
i ) ≡ 1 or 3 (mod 4), and therefore ki ≡ 0 or 2 (mod 4); in any case, ki

is an even integer. The crucial point is that, regardless of whether pi ≡ 1 (mod 4) or
pi ≡ 3 (mod 4), ki is always even for i �= 1. Our proof is now complete.

In view of the preceding theorem, any odd perfect number n can be expressed as

n = pk1
1 p2 j2

2 · · · p2 jr
r

= pk1
1 (p j2

2 · · · p jr
r )2

= pk1
1 m2

This leads directly to the following corollary.
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Corollary. If n is an odd perfect number, then n is of the form

n = pkm2

where p is a prime, p � | m, and p ≡ k ≡ 1 (mod 4); in particular, n ≡ 1 (mod 4).

Proof. The last assertion is the only non-obvious one. Because p ≡ 1 (mod 4), we
have pk ≡ 1 (mod 4). Notice that m must be odd; hence, m ≡ 1 or 3 (mod 4), and
therefore upon squaring, m2 ≡ 1 (mod 4). It follows that

n = pkm2 ≡ 1 · 1 ≡ 1 (mod 4)

establishing our corollary.

Another line of investigation involves estimating the size of an odd perfect
number n. The classical lower bound was obtained by Turcaninov in 1908: n has at
least four distinct prime factors and exceeds 2 · 106. With the advent of electronic
computers, the lower bound has been improved to n > 10300. Recent investigations
have shown that n must be divisible by at least nine distinct primes, the largest of
which is greater than 108, and the next largest exceeds 104; if 3 � | n, then the number
of distinct prime factors of n is at least 12.

Although all of this lends support to the belief that there are no odd perfect
numbers, only a proof of their nonexistence would be conclusive. We would then
be in the curious position of having built up a whole theory for a class of numbers
that did not exist. “It must always,” wrote the mathematician Joseph Sylvester in
1888, “stand to the credit of the Greek geometers that they succeeded in discovering
a class of perfect numbers which in all probability are the only numbers which are
perfect.”

Another numerical concept, with a history extending from the early Greeks,
is amicability. Two numbers such as 220 and 284 are called amicable, or friendly,
because they have the remarkable property that each number is “contained” within
the other, in the sense that each number is equal to the sum of all the positive
divisors of the other, not counting the number itself. Thus, as regards the divisors
of 220,

1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284

and for 284,

1 + 2 + 4 + 71 + 142 = 220

In terms of the σ function, amicable numbers m and n (or an amicable pair) are
defined by the equations

σ (m) − m = n σ (n) − n = m

or what amounts to the same thing:

σ (m) = m + n = σ (n)

Down through their quaint history, amicable numbers have been important in
magic and astrology, and in casting horoscopes, making talismans, and concocting



P1: BINAYA KUMAR DASH/BINAYA KUMAR DASH P2: IML/OVY QC: IML/OVY T1: BINAYA KUMAR DASH

bur83147_ch11_219_244 Burton DQ032A-Elementary-v2.cls December 14, 2009 14:53

NUMBERS OF SPECIAL FORM 235

love potions. The Greeks believed that these numbers had a particular influence in
establishing friendships between individuals. The philosopher Iamblichus of Chalcis
(ca. A.D. 250–A.D. 330) ascribed a knowledge of the pair 220 and 284 to the Pythagore-
ans. He wrote:

They [the Pythagoreans] call certain numbers amicable numbers, adopting virtues and
social qualities to numbers, as 284 and 220; for the parts of each have the power to
generate the other. . . .

Biblical commentators spotted 220, the lesser of the classical pair, in Genesis 32:14
as numbering Jacob’s present to Esau of 200 she-goats and 20 he-goats. According to
one commentator, Jacob wisely counted out his gift (a “hidden secret arrangement”)
to secure the friendship of Esau. An Arab of the 11th century, El Madschriti of
Madrid, related that he had put to the test the erotic effect of these numbers by
giving someone a confection in the shape of the smaller number, 220, to eat, while
he himself ate the larger, 284. He failed, however, to describe whatever success the
ceremony brought.

It is a mark of the slow development of number theory that until the 1630s no
one had been able to add to the original pair of amicable numbers discovered by
the Greeks. The first explicit rule described for finding certain types of amicable
pairs is due to Thabit ibn Qurra, an Arabian mathematician of the 9th century. In a
manuscript composed at that time, he indicated:

If the three numbers p = 3 · 2n−1 − 1, q = 3 · 2n − 1, and r = 9 · 22n−1 − 1 are all
prime and n ≥ 2, then 2n pq and 2nr are amicable numbers.

It was not until its rediscovery centuries later by Fermat and Descartes that Thabit’s
rule produced the second and third pairs of amicable numbers. In a letter to Mersenne
in 1636, Fermat announced that 17,296 and 18,416 were an amicable pair, and
Descartes wrote to Mersenne in 1638 that he had found the pair 9363584 and
9437056. Fermat’s pair resulted from taking n = 4 in Thabit’s rule (p = 23, q = 47,
r = 1151 are all prime) and Descartes’ from n = 7 (p = 191, q = 383, r = 73727
are all prime).

In the 1700s, Euler drew up at one clip a list of 64 amicable pairs; two of these
new pairs were later found to be “unfriendly,” one in 1909 and one in 1914. Adrien
Marie Legendre, in 1830, found another pair, 2172649216 and 2181168896.

Extensive computer searches have currently revealed more than 50000 amicable
pairs, some of them running to 320 digits; these include all those with values less than
1011. It has not yet been established whether the number of amicable pairs is finite
or infinite, nor has a pair been produced in which the numbers are relatively prime.
What has been proved is that each integer in a pair of relatively prime amicable
numbers must be greater than 1025, and their product must be divisible by at least 22
distinct primes. Part of the difficulty is that in contrast with the single formula for
generating (even) perfect numbers, there is no known rule for finding all amicable
pairs of numbers.
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Another inaccessible question, already considered by Euler, is whether there are
amicable pairs of opposite parity—that is, with one integer even and the other odd.

“Most” amicable pairs in which both members of the pair are even have their
sums divisible by 9. A simple example is 220 + 284 = 504 ≡ 0 (mod 9). The small-
est known even amicable pair whose sum fails to enjoy this feature is 666030256
and 696630544.

PROBLEMS 11.3

1. Prove that the Mersenne number M13 is a prime; hence, the integer n = 212 (213 − 1) is
perfect.
[Hint: Because

√
M13 < 91, Theorem 11.5 implies that the only candidates for prime

divisors of M13 are 53 and 79.]
2. Prove that the Mersenne number M19 is a prime; hence, the integer n = 218(219 − 1) is

perfect.
[Hint: By Theorems 11.5 and 11.6, the only prime divisors to test are 191, 457, and 647.]

3. Prove that the Mersenne number M29 is composite.
4. A positive integer n is said to be a deficient number if σ (n) < 2n and an abundant number

if σ (n) > 2n. Prove each of the following:
(a) There are infinitely many deficient numbers.

[Hint: Consider the integers n = pk , where p is an odd prime and k ≥ 1.]
(b) There are infinitely many even abundant numbers.

[Hint: Consider the integers n = 2k · 3, where k > 1.]
(c) There are infinitely many odd abundant numbers.

[Hint: Consider the integers n = 945 · k, where k is any positive integer not divisible
by 2, 3, 5, or 7. Because 945 = 33 · 5 · 7, it follows that gcd(945, k) = 1 and so
σ (n) = σ (945)σ (k).]

5. Assuming that n is an even perfect number and d | n, where 1 < d < n, show that d is
deficient.

6. Prove that any multiple of a perfect number is abundant.
7. Confirm that the pairs of integers listed below are amicable:

(a) 220 = 22 · 5 · 11 and 284 = 22 · 71. (Pythagoras, 500 B.C.)
(b) 17296 = 24 · 23 · 47 and 18416 = 24 · 1151. (Fermat, 1636)
(c) 9363584 = 27 · 191 · 383 and 9437056 = 27 · 73727. (Descartes, 1638)

8. For a pair of amicable numbers m and n, prove that

(∑
d | m

1/d

)−1

+
(∑

d | n

1/d

)−1

= 1

9. Establish the following statements concerning amicable numbers:
(a) A prime number cannot be one of an amicable pair.
(b) The larger integer in any amicable pair is a deficient number.
(c) If m and n are an amicable pair, with m even and n odd, then n is a perfect square.

[Hint: If p is an odd prime, then 1 + p + p2 + · · · + pk is odd only when k is an
even integer.]

10. In 1886, a 16-year-old Italian boy announced that 1184 = 25 · 37 and 1210 = 2 · 5 · 112

form an amicable pair of numbers, but gave no indication of the method of discovery.
Verify his assertion.
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11. Prove “Thabit’s rule” for amicable pairs: If p = 3 · 2n−1 − 1, q = 3 · 2n − 1, and
r = 9 · 22n−1 − 1 are all prime numbers, where n ≥ 2, then 2n pq and 2nr are an amicable
pair of numbers. This rule produces amicable numbers for n = 2, 4, and 7, but for no
other n ≤ 20,000.

12. By an amicable triple of numbers is meant three integers such that the sum of any
two is equal to the sum of the divisors of the remaining integer, excluding the number
itself. Verify that 25 · 3 · 13 · 293 · 337, 25 · 3 · 5 · 13 · 16561, and 25 · 3 · 13 · 99371 are
an amicable triple.

13. A finite sequence of positive integers is said to be a sociable chain if each is the sum of
the positive divisors of the preceding integer, excluding the number itself (the last integer
is considered as preceding the first integer in the chain). Show that the following integers
form a sociable chain:

14288, 15472, 14536, 14264, 12496

Only two sociable chains were known until 1970, when nine chains of four integers each
were found.

14. Prove that
(a) Any odd perfect number n can be represented in the form n = pa2, where p is a

prime.
(b) If n = pa2 is an odd perfect number, then n ≡ p (mod 8).

15. If n is an odd perfect number, prove that n has at least three distinct prime factors.
[Hint: Assume that n = pkq2 j , where p ≡ k ≡ 1 (mod 4). Use the inequality
2 = σ (n)/n ≤ [p/(p − 1)][q/(q − 1)] to reach a contradiction.]

16. If the integer n > 1 is a product of distinct Mersenne primes, show that σ (n) = 2k for
some k.

11.4 FERMAT NUMBERS

To round out the picture, let us mention another class of numbers that provides
a rich source of conjectures, the Fermat numbers. These may be considered as a
special case of the integers of the form 2m + 1. We observe that if 2m + 1 is an
odd prime, then m = 2n for some n ≥ 0. Assume to the contrary that m had an
odd divisor 2k + 1 > 1, say m = (2k + 1)r ; then 2m + 1 would admit the nontrivial
factorization

2m + 1 = 2(2k+1)r + 1 = (2r )2k+1 + 1

= (2r + 1)(22kr − 2(2k−1)r + · · · + 22r − 2r + 1)

which is impossible. In brief, 2m + 1 can be prime only if m is a power of 2.

Definition 11.2. A Fermat number is an integer of the form

Fn = 22n + 1 n ≥ 0

If Fn is prime, it is said to be a Fermat prime.

Fermat, whose mathematical intuition was usually reliable, observed that all the
integers

F0 = 3 F1 = 5 F2 = 17 F3 = 257 F4 = 65537
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are primes and expressed his belief that Fn is prime for each value of n. In writing
to Mersenne, he confidently announced: “I have found that numbers of the form
22n + 1 are always prime numbers and have long since signified to analysts the truth
of this theorem.” However, Fermat bemoaned his inability to come up with a proof
and, in subsequent letters, his tone of growing exasperation suggests that he was
continually trying to do so. The question was resolved negatively by Euler in 1732
when he found

F5 = 225 + 1 = 4294967297

to be divisible by 641. To us, such a number does not seem very large; but in Fermat’s
time, the investigation of its primality was difficult, and obviously he did not carry
it out.

The following elementary proof that 641 | F5 does not explicitly involve division
and is due to G. Bennett.

Theorem 11.8. The Fermat number F5 is divisible by 641.

Proof. We begin by putting a = 27 and b = 5, so that

1 + ab = 1 + 27 · 5 = 641

It is easily seen that

1 + ab − b4 = 1 + (a − b3)b = 1 + 3b = 24

But this implies that

F5 = 225 + 1 = 232 + 1

= 24a4 + 1

= (1 + ab − b4)a4 + 1

= (1 + ab)a4 + (1 − a4b4)

= (1 + ab)[a4 + (1 − ab)(1 + a2b2)]

which gives 641 | Fn .

To this day it is not known whether there are infinitely many Fermat primes
or, for that matter, whether there is at least one Fermat prime beyond F4. The best
“guess” is that all Fermat numbers Fn > F4 are composite.

Part of the interest in Fermat primes stems from the discovery that they have a
remarkable connection with the ancient problem of determining all regular polygons
that can be constructed with ruler and compass alone (where the former is used only
to draw straight lines and the latter only to draw arcs). In the seventh and last section
of the Disquisitiones Arithmeticae, Gauss proved that a regular polygon of n sides
is so constructible if and only if either

n = 2k or n = 2k p1 p2 · · · pr

where k ≥ 0 and p1, p2, . . . , pr are distinct Fermat primes. The construction of
regular polygons of 2k, 2k · 3, 2k · 5 and 2k · 15 sides had been known since the time
of the Greek geometers. In particular, they could construct regular n-sided polygons
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for n = 3, 4, 5, 6, 8, 10, 12, 15, and 16. What no one suspected before Gauss was
that a regular 17-sided polygon can also be constructed by ruler and compass. Gauss
was so proud of his discovery that he requested that a regular polygon of 17 sides be
engraved on his tombstone; for some reason, this wish was never fulfilled, but such
a polygon is inscribed on the side of a monument to Gauss erected in Brunswick,
Germany, his birthplace.

A useful property of Fermat numbers is that they are relatively prime to each
other.

Theorem 11.9. For Fermat numbers Fn and Fm , where m > n ≥ 0, gcd(Fm, Fn) = 1.

Proof. Put d = gcd(Fm, Fn). Because Fermat numbers are odd integers, d must be
odd. If we set x = 22n

and k = 2m−n , then

Fm − 2

Fn
= (22n

)2m−n − 1

22n + 1

= xk − 1

x + 1
= xk−1 − xk−2 + · · · − 1

whence Fn | (Fm − 2). From d | Fn , it follows that d | (Fm − 2). Now use the fact that
d | Fm to obtain d | 2. But d is an odd integer, and so d = 1, establishing the result
claimed.

This leads to a pleasant little proof of the infinitude of primes. We know that
each of the Fermat numbers F0, F1, . . . , Fn is divisible by a prime that, according
to Theorem 11.9, does not divide any of the other Fk . Thus, there are at least n + 1
distinct primes not exceeding Fn . Because there are infinitely many Fermat numbers,
the number of primes is also infinite.

In 1877, the Jesuit priest T. Pepin devised the practical test (Pepin’s test) for
determining the primality of Fn that is embodied in the following theorem.

Theorem 11.10 Pepin’s test. For n ≥ 1, the Fermat number Fn = 22n + 1 is prime
if and only if

3(Fn−1)/2 ≡ −1 (mod Fn)

Proof. First let us assume that

3(Fn−1)/2 ≡ −1 (mod Fn)

Upon squaring both sides, we get

3Fn−1 ≡ 1 (mod Fn)

The same congruence holds for any prime p that divides Fn :

3Fn−1 ≡ 1 (mod p)

Now let k be the order of 3 modulo p. Theorem 8.1 indicates that k | Fn − 1, or in other
words, that k | 22n

; therefore k must be a power of 2.
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It is not possible that k = 2r for any r ≤ 2n − 1. If this were so, repeated squaring
of the congruence 3k ≡ 1 (mod p) would yield

322n −1 ≡ 1 (mod p)

or, what is the same thing,

3(Fn−1)/2 ≡ 1 (mod p)

We would then arrive at 1 ≡ −1 (mod p), resulting in p = 2, which is a contradiction.
Thus the only possibility open to us is that

k = 22n = Fn − 1

Fermat’s theorem tells us that k ≤ p − 1, which means, in turn, that Fn = k + 1 ≤ p.
Because p | Fn , we also have p ≤ Fn . Together these inequalities mean that Fn = p,
so that Fn is a prime.

On the other hand, suppose that Fn , n ≥ 1, is prime. The Quadratic Reciprocity
Law gives

(3/Fn) = (Fn/3) = (2/3) = −1

when we use the fact that Fn ≡ (−1)2n + 1 = 2 (mod 3). Applying Euler’s Criterion,
we end up with

3(Fn−1)/2 ≡ −1 (mod Fn)

Let us demonstrate the primality of F3 = 257 using Pepin’s test. Working mod-
ulo 257, we have

3(F3−1)/2 = 3128 = 33(35)25

≡ 27(−14)25

≡ 27 · 1424(−14)

≡ 27(17)(−14)

≡ 27 · 19 ≡ 513 ≡ −1 (mod 257)

so that F3 is prime.
We have already observed that Euler proved the Fermat number F5 to be com-

posite, with the factorization F5 = 232 + 1 = 641 · 6700417. As for F6, in 1880,
F. Landry announced that

F6 = 264 + 1

= 274177 · 67280421310721

This accomplishment is all the more remarkable when we consider that Landry
was 82 years old at the time. Landry never published an account of his work on
factoring F6 but it is unlikely that he used trial division. Indeed, he had earlier
estimated that trying to show the primality of F6 by testing numbers of the form
128k + 1 could take 3000 years.

In 1905, J. C. Morehead and A. E. Western independently performed Pepin’s
test on F7 and communicated its composite character almost simultaneously. It took
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66 years, until 1971, before Brillhart and Morrison discovered the prime factorization

F7 = 2128 + 1

= 59649589127497217 · 5704689200685129054721

(The possibility of arriving at such a factorization without recourse to fast computers
with large memories is remote.) Morehead and Western carried out (in 1909) a
similar calculation for the compositeness of F8, each doing half the work; but the
actual factors were not found until 1980, when Brent and Pollard showed the smallest
prime divisor of F8 to be

1238926361552897

The other factor of F8 is 62 digits long and shortly afterward was shown to be prime.
A large Fn to which Pepin’s test has been applied is F14, a number of 4933 digits;
this Fermat number was determined to be composite by Selfridge and Hurwitz in
1963, although at present no divisor is known.

Our final theorem, due to Euler and Lucas, is a valuable aid in determining the
divisors of Fermat numbers. As early as 1747, Euler established that every prime
factor of Fn must be of the form k · 2n+1 + 1. Over 100 years later, in 1879, the French
number theorist Edouard Lucas improved upon this result by showing that k can be
taken to be even. From this, we have the following theorem.

Theorem 11.11. Any prime divisor p of the Fermat number Fn = 22n + 1, where
n ≥ 2, is of the form p = k · 2n+2 + 1.

Proof. For a prime divisor p of Fn ,

22n ≡ −1 (modp)

which is to say, upon squaring, that

22n+1 ≡ 1 (mod p)

If h is the order of 2 modulo p, this congruence tells us that

h | 2n+1

We cannot have h = 2r where 1 ≤ r ≤ n, for this would lead to

22n ≡ 1 (mod p)

and, in turn, to the contradiction that p = 2. This lets us conclude that h = 2n+1.
Because the order of 2 modulo p divides φ(p) = p − 1, we may further conclude that
2n+1 | p − 1. The point is that for n ≥ 2, p ≡ 1 (mod 8), and therefore, by Theorem
9.6, the Legendre symbol (2/p) = 1. Using Euler’s criterion, we immediately pass to

2(p−1)/2 ≡ (2/p) = 1 (mod p)

An appeal to Theorem 8.1 finishes the proof. It asserts that h | (p − 1)/2, or equivalently,
2n+1 | (p − 1)/2. This forces 2n+2 | p − 1, and we obtain p = k · 2n+2 + 1 for some
integer k.
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Theorem 11.11 enables us to determine quickly the nature of F4 = 216 + 1 =
65537. The prime divisors of F4 must take the form 26k + 1 = 64k + 1. There is
only one prime of this kind that is less than or equal to

√
F4, namely, the prime 193.

Because this trial divisor fails to be a factor of F4, we may conclude that F4 is itself
a prime.

The increasing power and availability of computing equipment has allowed the
search for prime factors of the Fermat numbers to be extended significantly. For
example, the first prime factor of F28 was found in 1997. It is now known that Fn

is composite for 5 ≤ n ≤ 30 and for some 140 additional values of n. The largest
composite Fermat number found to date is F303088, with divisor 3 · 2303093 + 1.

The complete prime factorization of Fn has been obtained for 5 ≤ n ≤ 11 and
no other n. After the factorization of F8, it was little suspected that F11, 629 digits
long, would be the next Fermat number to be completely factored; but this was
carried out by Brent and Morain in 1988. The factorization of the 155-digit F9 by
the joint efforts of Lenstra, Manasse, and Pollard in 1990 was noteworthy for having
employed approximately 700 workstations at various locations around the world.
The complete factorization took about 4 months. Not long thereafter (1996), Brent
determined the remaining two prime factors of the 310-digit F10. The reason for
arriving at the factorization of F11 before that of F9 and F10 was that size of the
second-largest prime factor of F11 made the calculations much easier. The second-
largest prime factor of F11 contains 22 digits, whereas those of F9 and F10 have
lengths of 49 and 40 digits, respectively.

The enormous F31, with a decimal expansion of over 600 million digits, was
proved to be composite in 2001. It was computationally fortunate that F31 had a
prime factor of only 23 digits. For F33, the challenge remains: it is the smallest
Fermat number whose character is in doubt. Considering that F33 has more than two
trillion digits, the matter may not be settled for some time.

A resume of the current primality status for the Fermat numbers Fn , where
0 ≤ n ≤ 35, is given below.

n Character of Fn

0, 1, 2, 3, 4 prime
5, 6, 7, 8, 9, 10, 11 completely factored
12, 13, 15, 16, 18, 19, 25, 27, 30 two or more prime factors known
17, 21, 23, 26, 28, 29, 31, 32 only one prime factor known
14, 20, 22, 24 composite, but no factor known
33, 34 ,35 character unknown

The case for F16 was settled in 1953 and lays to rest the tantalizing conjecture
that all the terms of the sequence

2 + 1, 22 + 1, 222 + 1, 2222 + 1, 22222

+ 1, . . .

are prime numbers. What is interesting is that none of the known prime factors p of
a Fermat number Fn gives rise to a square factor p2; indeed, it is speculated that the
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Fermat numbers are square-free. This is in contrast to the Mersenne numbers where,
for example, 9 divides M6n .

Numbers of the form k · 2n + 1, which occur in the search for prime factors of
Fermat numbers, are of considerable interest in their own right. The smallest n for
which k · 2n + 1 is prime may be quite large in some cases; for instance, the first
time 47 · 2n + 1 is prime is when n = 583. But there also exist values of k such
that k · 2n + 1 is always composite. Indeed, in 1960 it was proved that there exist
infinitely many odd integers k with k · 2n + 1 composite for all n ≥ 1. The problem
of determining the least such value of k remains unsolved. Up to now, k = 78557 is
the smallest known k for which k · 2n + 1 is never prime for any n.

PROBLEMS 11.4

1. By taking fourth powers of the congruence 5 · 27 ≡ −1 (mod 641), deduce that 232 + 1 ≡
0 (mod 641); hence, 641 | F5.

2. Gauss (1796) discovered that a regular polygon with p sides, where p is a prime, can be
constructed with ruler and compass if and only if p − 1 is a power of 2. Show that this
condition is equivalent to requiring that p be a Fermat prime.

3. For n > 0, prove the following:
(a) There are infinitely many composite numbers of the form 22n + 3.

[Hint: Use the fact that 22n = 3k + 1 for some k to establish that 7 | 222n+1 + 3.]
(b) Each of the numbers 22n + 5 is composite.

4. Composite integers n for which n | 2n − 2 are called pseudoprimes. Show that every
Fermat number Fn is either a prime or a pseudoprime.
[Hint: Raise the congruence 22n ≡ −1 (mod Fn) to the 22n−n power.]

5. For n ≥ 2, show that the last digit of the Fermat number Fn = 22n + 1 is 7.
[Hint: By induction on n, verify that 22n ≡ 6 (mod 10) for n ≥ 2.]

6. Establish that 22n − 1 has at least n distinct prime divisors.
[Hint: Use induction on n and the fact that

22n − 1 = (22n−1 + 1)(22n−1 − 1).]

7. In 1869, Landry wrote: “No one of our numerous factorizations of the numbers 2n ± 1
gave us as much trouble and labor as that of 258 + 1.” Verify that 258 + 1 can be factored
rather easily using the identity

4x4 + 1 = (2x2 − 2x + 1)(2x2 + 2x + 1)

8. From Problem 5, conclude the following:
(a) The Fermat number Fn is never a perfect square.
(b) For n > 0, Fn is never a triangular number.

9. (a) For any odd integer n, show that 3 | 2n + 1.
(b) Prove that if p and q are both odd primes and q | 2p + 1, then either q = 3 or

q = 2kp + 1 for some integer k.
[Hint: Because 22p ≡ 1 (mod q), the order of 2 modulo q is either 2 or 2p; in the
latter case, 2p | φ(q).]

(c) Find the smallest prime divisor q > 3 of each of the integers 229 + 1 and 241 + 1.
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10. Determine the smallest odd integer n > 1 such that 2n − 1 is divisible by a pair of twin
primes p and q , where 3 < p < q .
[Hint: Being the first member of a pair of twin primes, p ≡ −1 (mod 6). Because (2/p) =
(2/q) = 1, Theorem 9.6 gives p ≡ q ≡ ±1 (mod 8); hence, p ≡ −1 (mod 24) and
q ≡ 1 (mod 24). Now use the fact that the orders of 2 modulo p and q must divide n.]

11. Find all prime numbers p such that p divides 2p + 1; do the same for 2p − 1.
12. Let p = 3 · 2n + 1 be a prime, where n ≥ 1. (Twenty-nine primes of this form are cur-

rently known, the smallest occurring when n = 1 and the largest when n = 303093.)
Prove each of the following assertions:
(a) The order of 2 modulo p is either 3, 2k or 3 · 2k for some 0 ≤ k ≤ n.
(b) Except when p = 13, 2 is not a primitive root of p.

[Hint: If 2 is a primitive root of p, then (2/p) = −1.]
(c) The order of 2 modulo p is not divisible by 3 if and only if p divides a Fermat number

Fk with 0 ≤ k ≤ n − 1.
[Hint: Use the identity 22k − 1 = F0 F1 F2 . . . Fk−1.]

(d) There is no Fermat number that is divisible by 7, 13, or 97.
13. For any Fermat number Fn = 22n + 1 with n > 0, establish that Fn ≡ 5 or 8 (mod 9)

according as n is odd or even.
[Hint: Use induction to show, first, that 22n ≡ 22n−2

(mod 9) for n ≥ 3.]
14. Use the fact that the prime divisors of F5 are of the form 27k + 1 = 128k + 1 to confirm

that 641 | F5.
15. For any prime p > 3, prove the following:

(a) 1
3 (2p + 1) is not divisible by 3. [Hint: Consider the identity

2p + 1

2 + 1
= 2p−1 − 2p−2 + · · · − 2 + 1.]

(b) 1
3 (2p + 1) has a prime divisor greater than p. [Hint: Problem 9(b).]

(c) The integers 1
3 (219 + 1) and 1

3 (223 + 1) are both prime.
16. From the previous problem, deduce that there are infinitely many prime numbers.
17. (a) Prove that 3, 5, and 7 are quadratic nonresidues of any Fermat prime Fn , where n ≥ 2.

[Hint: Pepin’s test and Problem 15, Section 9.3.]
(b) Show that every quadratic nonresidue of a Fermat prime Fn is a primitive root of Fn .

18. Establish that any Fermat prime Fn can be written as the difference of two squares, but
not of two cubes. [Hint: Notice that

Fn = 22n + 1 = (22n−1 + 1)2 − (22n−1)2.]

19. For n ≥ 1, show that gcd(Fn, n) = 1.
[Hint: Theorem 11.11.]

20. Use Theorems 11.9 and 11.11 to deduce that there are infinitely many primes of the form
4k + 1.
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CHAPTER

12
CERTAIN NONLINEAR

DIOPHANTINE EQUATIONS

He who seeks for methods without having a definite problem in mind seeks for
the most part in vain.

D. HILBERT

12.1 THE EQUATION x2 + y2 = z2

Fermat, whom many regard as a father of modern number theory, nevertheless, had a
custom peculiarly ill-suited to this role. He published very little personally, preferring
to communicate his discoveries in letters to friends (usually with no more than the
terse statement that he possessed a proof) or to keep them to himself in notes.
A number of such notes were jotted down in the margin of his copy of Bachet’s
translation of Diophantus’s Arithmetica. By far the most famous of these marginal
comments is the one—presumably written about 1637—which states:

It is impossible to write a cube as a sum of two cubes, a fourth power as a sum of two
fourth powers, and, in general, any power beyond the second as a sum of two similar
powers. For this, I have discovered a truly wonderful proof, but the margin is too small
to contain it.

In this tantalizing aside, Fermat was simply asserting that, if n > 2, then the Dio-
phantine equation

xn + yn = zn

245
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has no solution in the integers, other than the trivial solutions in which at least one
of the variables is zero.

The quotation just cited has come to be known as Fermat’s Last Theorem or,
more accurately, Fermat’s conjecture. By the 1800s, all the assertions appearing in the
margin of his Arithmetica had either been proved or refuted—with the one exception
of the Last Theorem (hence the name). The claim has fascinated many generations of
mathematicians, professional and amateur alike, because it is so simple to understand
yet so difficult to establish. If Fermat really did have a “truly wonderful proof,” it
has never come to light. Whatever demonstration he thought he possessed very
likely contained a flaw. Indeed, Fermat himself may have subsequently discovered
the error, for there is no reference to the proof in his correspondence with other
mathematicians.

Fermat did, however, leave a proof of his Last Theorem for the case n = 4. To
carry through the argument, we first undertake the task of identifying all solutions
in the positive integers of the equation

x2 + y2 = z2 (1)

Because the length z of the hypotenuse of a right triangle is related to the lengths
x and y of the sides by the famous Pythagorean equation x2 + y2 = z2, the search
for all positive integers that satisfy Eq. (1) is equivalent to the problem of finding all
right triangles with sides of integral length. The latter problem was raised in the days
of the Babylonians and was a favorite with the ancient Greek geometers. Pythagoras
himself has been credited with a formula for infinitely many such triangles, namely,

x = 2n + 1 y = 2n2 + 2n z = 2n2 + 2n + 1

where n is an arbitrary positive integer. This formula does not account for all right
triangles with integral sides, and it was not until Euclid wrote his Elements that a
complete solution to the problem appeared.

The following definition gives us a concise way of referring to the solutions of
Eq. (1).

Definition 12.1. A Pythagorean triple is a set of three integers x , y, z such that
x2 + y2 = z2; the triple is said to be primitive if gcd(x, y, z) = 1.

Perhaps the best-known examples of primitive Pythagorean triples are 3, 4, 5
and 5, 12, 13, whereas a less obvious one is 12, 35, 37.

There are several points that need to be noted. Suppose that x , y, z is any
Pythagorean triple and d = gcd(x, y, z). If we write x = dx1, y = dy1, z = dz1,
then it is easily seen that

x2
1 + y2

1 = x2 + y2

d2
= z2

d2
= z2

1

with gcd(x1, y1, z1) = 1. In short, x1, y1, z1 form a primitive Pythagorean triple.
Thus, it is enough to occupy ourselves with finding all primitive Pythagorean triples;
any Pythagorean triple can be obtained from a primitive one upon multiplying by a
suitable nonzero integer. The search may be confined to those primitive Pythagorean
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triples x , y, z in which x > 0, y > 0, z > 0, inasmuch as all others arise from the
positive ones through a simple change of sign.

Our development requires two preparatory lemmas, the first of which sets forth
a basic fact regarding primitive Pythagorean triples.

Lemma 1. If x , y, z is a primitive Pythagorean triple, then one of the integers x or y
is even, while the other is odd.

Proof. If x and y are both even, then 2 | (x2 + y2) or 2 | z2, so that 2 | z. The inference
is that gcd(x, y, z) ≥ 2, which we know to be false. If, on the other hand, x and y
should both be odd, then x2 ≡ 1 (mod 4) and y2 ≡ 1 (mod 4), leading to

z2 = x2 + y2 ≡ 2 (mod 4)

But this is equally impossible, because the square of any integer must be congruent
either to 0 or to 1 modulo 4.

Given a primitive Pythagorean triple x , y, z, exactly one of these integers is
even, the other two being odd (if x , y, z were all odd, then x2 + y2 would be even,
whereas z2 is odd). The foregoing lemma indicates that the even integer is either x
or y; to be definite, we shall hereafter write our Pythagorean triples so that x is even
and y is odd; then, of course, z is odd.

It is worth noticing (and we will use this fact) that each pair of the integers x ,
y, and z must be relatively prime. Were it the case that gcd(x, y) = d > 1, then
there would exist a prime p with p | d. Because d | x and d | y, we would have p | x
and p | y, whence p | x2 and p | y2. But then p | (x2 + y2), or p | z2, giving p | z.
This would conflict with the assumption that gcd(x, y, z) = 1, and so d = 1. In like
manner, one can verify that gcd(y, z) = gcd(x, z) = 1.

By virtue of Lemma 1, there exists no primitive Pythagorean triple x , y, z all of
whose values are prime numbers. There are primitive Pythagorean triples in which
z and one of x or y is a prime; for instance, 3, 4, 5; 11, 60, 61; and 19, 180, 181. It
is unknown whether there exist infinitely many such triples.

The next hurdle that stands in our way is to establish that if a and b are relatively
prime positive integers having a square as their product, then a and b are themselves
squares. With an assist from the Fundamental Theorem of Arithmetic, we can prove
considerably more, to wit, Lemma 2.

Lemma 2. If ab = cn , where gcd(a, b) = 1, then a and b are nth powers; that is, there
exist positive integers a1, b1 for which a = an

1 , b = bn
1 .

Proof. There is no harm in assuming that a > 1 and b > 1. If

a = pk1
1 pk2

2 · · · pkr
r b = q j1

1 q j2
2 · · · q js

s

are the prime factorizations of a and b, then, bearing in mind that gcd(a, b) = 1, no
pi can occur among the qi . As a result, the prime factorization of ab is given by

ab = pk1
1 · · · pkr

r q j1
1 · · · q js

s
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Let us suppose that c can be factored into primes as c = ul1
1 ul2

2 · · · ult
t . Then the condition

ab = cn becomes

pk1
1 · · · pkr

r q j1
1 · · · q js

s = unl1
1 · · · unlt

t

From this we see that the primes u1, . . . , ut are p1, . . . , pr , q1, . . . , qs (in some order)
and nl1, . . . , nlt are the corresponding exponents k1, . . . , kr , j1, . . . , js . The conclu-
sion: each of the integers ki and ji must be divisible by n. If we now put

a1 = pk1/n
1 pk2/n

2 · · · pkr /n
r

b1 = q j1/n
1 q j2/n

2 · · · q js/n
s

then an
1 = a, bn

1 = b, as desired.

With the routine work now out of the way, the characterization of all primitive
Pythagorean triples is fairly straightforward.

Theorem 12.1. All the solutions of the Pythagorean equation

x2 + y2 = z2

satisfying the conditions

gcd(x, y, z) = 1 2 | x x > 0, y > 0, z > 0

are given by the formulas

x = 2st y = s2 − t2 z = s2 + t2

for integers s > t > 0 such that gcd(s, t) = 1 and s �≡ t (mod 2).

Proof. To start, let x , y, z be a (positive) primitive Pythagorean triple. Because we
have agreed to take x even, and y and z both odd, z − y and z + y are even integers;
say, z − y = 2u and z + y = 2v . Now the equation x2 + y2 = z2 may be rewritten as

x2 = z2 − y2 = (z − y)(z + y)

whence ( x

2

)2
=

(
z − y

2

) (
z + y

2

)
= uv

Notice that u and v are relatively prime; indeed, if gcd(u, v) = d > 1, then d | (u − v)
and d | (u + v), or equivalently, d | y and d | z, which violates the fact that gcd(y, z) = 1.
Taking Lemma 2 into consideration, we may conclude that u and v are each perfect
squares; to be specific, let

u = t2 v = s2

where s and t are positive integers. The result of substituting these values of u and v
reads

z = v + u = s2 + t2

y = v − u = s2 − t2

x2 = 4vu = 4s2t2
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or, in the last case x = 2st . Because a common factor of s and t divides both y and z,
the condition gcd(y, z) = 1 forces gcd(s, t) = 1. It remains for us to observe that if s
and t were both even, or both odd, then this would make each of y and z even, which
is an impossibility. Hence, exactly one of the pair s, t is even, and the other is odd; in
symbols, s �≡ t (mod 2).

Conversely, let s and t be two integers subject to the conditions described before.
That x = 2st , y = s2 − t2, z = s2 + t2 form a Pythagorean triple follows from the
easily verified identity

x2 + y2 = (2st)2 + (s2 − t2)2 = (s2 + t2)2 = z2

To see that this triple is primitive, we assume that gcd(x, y, z) = d > 1 and take p to
be any prime divisor of d . Observe that p �= 2, because p divides the odd integer z (one
of s and t is odd, and the other is even, hence, s2 + t2 = z must be odd). From p | y
and p | z, we obtain p | (z + y) and p | (z − y), or put otherwise, p | 2s2 and p | 2t2.
But then p | s and p | t , which is incompatible with gcd(s, t) = 1. The implication of
all this is that d = 1 and so x , y, z constitutes a primitive Pythagorean triple. Theorem
12.1 is thus proven.

The table below lists some primitive Pythagorean triples arising from small
values of s and t . For each value of s = 2, 3, . . . , 7, we have taken those values of t
that are relatively prime to s, less than s, and even whenever s is odd.

x y z

s t (2st) (s2 − t2) (s2 + t2)

2 1 4 3 5
3 2 12 5 13
4 1 8 15 17
4 3 24 7 25
5 2 20 21 29
5 4 40 9 41
6 1 12 35 37
6 5 60 11 61
7 2 28 45 53
7 4 56 33 65
7 6 84 13 85

From this, or from a more extensive table, the reader might be led to suspect
that if x , y, z is a primitive Pythagorean triple, then exactly one of the integers x or
y is divisible by 3. This is, in fact, the case. For, by Theorem 12.1, we have

x = 2st y = s2 − t2 z = s2 + t2

where gcd(s, t) = 1. If either 3 | s or 3 | t , then evidently 3 | x , and we need go no
further. Suppose that 3 � | s and 3 � | t . Fermat’s theorem asserts that

s2 ≡ 1 (mod 3) t2 ≡ 1 (mod 3)
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and so

y = s2 − t2 ≡ 0 (mod 3)

In other words, y is divisible by 3, which is what we were required to show.
Let us define a Pythagorean triangle to be a right triangle whose sides are

of integral length. Our findings lead to an interesting geometric fact concerning
Pythagorean triangles, recorded as Theorem 12.2.

Theorem 12.2. The radius of the inscribed circle of a Pythagorean triangle is always
an integer.

Proof. Let r denote the radius of the circle inscribed in a right triangle with hypotenuse
of length z and sides of lengths x and y. The area of the triangle is equal to the sum of
the areas of the three triangles having common vertex at the center of the circle; hence,

1

2
xy = 1

2
r x + 1

2
r y + 1

2
r z = 1

2
r (x + y + z)

The situation is illustrated below:

Now x2 + y2 = z2. But we know that the positive integral solutions of this equation
are given by

x = 2kst y = k(s2 − t2) z = k(s2 + t2)

for an appropriate choice of positive integers k, s, t . Replacing x , y, z in the equation
xy = r (x + y + z) by these values and solving for r , it will be found that

r = 2k2st(s2 − t2)

k(2st + s2 − t2 + s2 + t2)

= kt(s2 − t2)

s + t

= kt(s − t)

which is an integer.

We take the opportunity to mention another result relating to Pythagorean tri-
angles. Notice that it is possible for different Pythagorean triangles to have the same
area; for instance, the right triangles associated with the primitive Pythagorean triples
20, 21, 29 and 12, 35, 37 each have an area equal to 210. Fermat proved: For any
integer n > 1, there exist n Pythagorean triangles with different hypotenuses and
the same area. The details of this are omitted.
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PROBLEMS 12.1

1. (a) Find three different Pythagorean triples, not necessarily primitive, of the form
16, y, z.

(b) Obtain all primitive Pythagorean triples x , y, z in which x = 40; do the same for
x = 60.

2. If x , y, z is a primitive Pythagorean triple, prove that x + y and x − y are congruent
modulo 8 to either 1 or 7.

3. (a) Prove that if n �≡ 2 (mod 4), then there is a primitive Pythagorean triple x , y, z in
which x or y equals n.

(b) If n ≥ 3 is arbitrary, find a Pythagorean triple (not necessarily primitive) having n as
one of its members.
[Hint: Assuming n is odd, consider the triple n, 1

2 (n2 − 1), 1
2 (n2 + 1); for n even,

consider the triple n, (n2/4) − 1, (n2/4) + 1.]
4. Prove that in a primitive Pythagorean triple x , y, z, the product xy is divisible by 12,

hence 60 | xyz.
5. For a given positive integer n, show that there are at least n Pythagorean triples having

the same first member.
[Hint: Let yk = 2k(22n−2k − 1) and zk = 2k(22n−2k + 1) for k = 0, 1, 2, . . . , n − 1. Then
2n+1, yk , zk are all Pythagorean triples.]

6. Verify that 3, 4, 5 is the only primitive Pythagorean triple involving consecutive positive
integers.

7. Show that 3n, 4n, 5n where n = 1, 2, . . . are the only Pythagorean triples whose terms
are in arithmetic progression.
[Hint: Call the triple in question x − d, x , x + d , and solve for x in terms of d .]

8. Find all Pythagorean triangles whose areas are equal to their perimeters.
[Hint: The equations x2 + y2 = z2 and x + y + z = 1

2 xy imply that (x − 4)(y − 4) = 8.]
9. (a) Prove that if x , y, z is a primitive Pythagorean triple in which x and z are consecutive

positive integers, then

x = 2t(t + 1) y = 2t + 1 z = 2t(t + 1) + 1

for some t > 0.
[Hint: The equation 1 = z − x = s2 + t2 − 2st implies that s − t = 1.]

(b) Prove that if x , y, z is a primitive Pythagorean triple in which the difference z − y = 2,
then

x = 2t y = t2 − 1 z = t2 + 1

for some t > 1.
10. Show that there exist infinitely many primitive Pythagorean triples x , y, z whose even

member x is a perfect square.
[Hint: Consider the triple 4n2, n4 − 4, n4 + 4, where n is an arbitrary odd integer.]

11. For an arbitrary positive integer n, show that there exists a Pythagorean triangle the radius
of whose inscribed circle is n.
[Hint: If r denotes the radius of the circle inscribed in the Pythagorean triangle having
sides a and b and hypotenuse c, then r = 1

2 (a + b − c). Now consider the triple 2n + 1,
2n2 + 2n, 2n2 + 2n + 1.]

12. (a) Establish that there exist infinitely many primitive Pythagorean triples x , y, z in
which x and y are consecutive positive integers. Exhibit five of these.
[Hint: If x , x + 1, z forms a Pythagorean triple, then so does the triple 3x + 2z + 1,
3x + 2z + 2, 4x + 3z + 2.]
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(b) Show that there exist infinitely many Pythagorean triples x , y, z in which x and y
are consecutive triangular numbers. Exhibit three of these.
[Hint: If x , x + 1, z forms a Pythagorean triple, then so does t2x , t2x+1, (2x + 1)z.]

13. Use Problem 12 to prove that there exist infinitely many triangular numbers that are
perfect squares. Exhibit five such triangular numbers.
[Hint: If x , x + 1, z forms a Pythagorean triple, then upon setting u = z − x − 1, v =
x + 1

2 (1 − z), one obtains u(u + 1)/2 = v2.]

12.2 FERMAT’S LAST THEOREM

With our knowledge of Pythagorean triples, we are now prepared to take up the
one case in which Fermat himself had a proof of his conjecture, the case n = 4.
The technique used in the proof is a form of induction sometimes called “Fermat’s
method of infinite descent.” In brief, the method may be described as follows: It is
assumed that a solution of the problem in question is possible in the positive integers.
From this solution, one constructs a new solution in smaller positive integers, which
then leads to a still smaller solution, and so on. Because the positive integers cannot
be decreased in magnitude indefinitely, it follows that the initial assumption must
be false and therefore no solution is possible.

Instead of giving a proof of the Fermat conjecture for n = 4, it turns out to be
easier to establish a fact that is slightly stronger, namely, the impossibility of solving
the equation x4 + y4 = z2 in the positive integers.

Theorem 12.3 Fermat. The Diophantine equation x4 + y4 = z2 has no solution in
positive integers x , y, z.

Proof. With the idea of deriving a contradiction, let us assume that there exists a
positive solution x0, y0, z0 of x4 + y4 = z2. Nothing is lost in supposing also that
gcd(x0, y0) = 1; otherwise, put gcd(x0, y0) = d , x0 = dx1, y0 = dy1, z0 = d2z1 to
get x4

1 + y4
1 = z2

1 with gcd(x1, y1) = 1.
Expressing the supposed equation x4

0 + y4
0 = z2

0 in the form

(x2
0 )2 + (y2

0 )2 = z2
0

we see that x2
0 , y2

0 , z0 meet all the requirements of a primitive Pythagorean triple, and
therefore Theorem 12.1 can be brought into play. In such triples, one of the integers
x2

0 or y2
0 is necessarily even, whereas the other is odd. Taking x2

0 (and hence x0) to be
even, there exist relatively prime integers s > t > 0 satisfying

x2
0 = 2st

y2
0 = s2 − t2

z0 = s2 + t2

where exactly one of s and t is even. If it happens that s is even, then we have

1 ≡ y2
0 = s2 − t2 ≡ 0 − 1 ≡ 3 (mod 4)

which is an impossibility. Therefore, s must be the odd integer and, in consequence,
t is the even one. Let us put t = 2r . Then the equation x2

0 = 2st becomes x2
0 = 4sr ,
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which says that ( x0

2

)2
= sr

But Lemma 2 asserts that the product of two relatively prime integers [note that
gcd(s, t) = 1 implies that gcd(s, r ) = 1] is a square only if each of the integers it-
self is a square; hence, s = z2

1, r = w2
1 for positive integers z1, w1.

We wish to apply Theorem 12.1 again, this time to the equation

t2 + y2
0 = s2

Because gcd(s, t) = 1, it follows that gcd(t, y0, s) = 1, making t , y0, s a primitive
Pythagorean triple. With t even, we obtain

t = 2uv

y0 = u2 − v2

s = u2 + v2

for relatively prime integers u > v > 0. Now the relation

uv = t

2
= r = w2

1

signifies that u and v are both squares (Lemma 2 serves its purpose once more);
say, u = x2

1 and v = y2
1 . When these values are substituted into the equation for s, the

result is

z2
1 = s = u2 + v2 = x4

1 + y4
1

A crucial point is that, z1 and t being positive, we also have the inequality

0 < z1 ≤ z2
1 = s ≤ s2 < s2 + t2 = z0

What has happened is this. Starting with one solution x0, y0, z0 of x4 + y4 = z2,
we have constructed another solution x1, y1, z1 such that 0 < z1 < z0. Repeating the
whole argument, our second solution would lead to a third solution x2, y2, z2 with
0 < z2 < z1, which, in turn, gives rise to a fourth. This process can be carried out as
many times as desired to produce an infinite decreasing sequence of positive integers

z0 > z1 > z2 > · · ·
Because there is only a finite supply of positive integers less than z0, a contradiction
occurs. We are forced to conclude that x4 + y4 = z2 is not solvable in the positive
integers.

As an immediate result, one gets the following corollary.

Corollary. The equation x4 + y4 = z4 has no solution in the positive integers.

Proof. If x0, y0, z0 were a positive solution of x4 + y4 = z4, then x0, y0, z2
0 would

satisfy the equation x4 + y4 = z2, in conflict with Theorem 12.3.

If n > 2, then n is either a power of 2 or divisible by an odd prime p. In the
first case, n = 4k for some k ≥ 1 and the Fermat equation xn + yn = zn can be
written as

(xk)4 + (yk)4 = (zk)4
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We have just seen that this equation is impossible in the positive integers. When
n = pk, the Fermat equation is the same as

(xk)p + (yk)p = (zk)p

If it could be shown that the equation u p + v p = w p has no solution, then, in par-
ticular, there would be no solution of the form u = xk , v = yk , w = zk ; hence,
xn + yn = zn would not be solvable. Therefore, Fermat’s conjecture reduces to this:
For no odd prime p does the equation

x p + y p = z p

admit a solution in the positive integers.
Although the problem has challenged the foremost mathematicians of the last

300 years, their efforts tended to produce partial results and proofs of individual
cases. Euler gave the first proof of the Fermat conjecture for the prime p = 3 in the
year 1770; the reasoning was incomplete at one stage, but Legendre later supplied
the missing steps. Using the method of infinite descent, Dirichlet and Legendre
independently settled the case p = 5 around 1825. Not long thereafter, in 1839,
Lamé proved the conjecture for seventh powers. With the increasing complexity
of the arguments came the realization that a successful resolution of the general
case called for different techniques. The best hope seemed to lie in extending the
meaning of “integer” to include a wider class of numbers and, by attacking the
problem within this enlarged system, obtaining more information than was possible
by using ordinary integers only.

The German mathematician Kummer made the major breakthrough. In 1843,
he submitted to Dirichlet a purported proof of Fermat’s conjecture based upon an
extension of the integers to include the so-called algebraic numbers (that is, complex
numbers satisfying polynomials with rational coefficients). Having spent consider-
able time on the problem himself, Dirichlet was immediately able to detect the flaw
in the reasoning: Kummer had taken for granted that algebraic numbers admit a
unique factorization similar to that of the ordinary integers, which is not always true.

But Kummer was undeterred by this perplexing situation and returned to his
investigations with redoubled effort. To restore unique factorization to the algebraic
numbers, he was led to invent the concept of ideal numbers. By adjoining these new
entities to the algebraic numbers, Kummer successfully proved Fermat’s conjecture
for a large class of primes that he termed regular primes (that this represented an
enormous achievement is reflected in the fact that the only irregular primes less
than 100 are 37, 59, and 67). Unfortunately, it is still not known whether there are
an infinite number of regular primes, whereas in the other direction, Jensen (1915)
established that there exist infinitely many irregular ones. Almost all the subsequent
progress on the problem was within the framework suggested by Kummer.

In 1983, a 29-year-old West German mathematician, Gerd Faltings, proved that
for each exponent n > 2, the Fermat equation xn + yn = zn can have at most a finite
number (as opposed to an infinite number) of integral solutions. At first glance, this
may not seem like much of an advance; but if it could be shown that the finite number
of solutions was zero in each case, then the Fermat’s conjecture would be laid to rest
once and for all.
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Another striking result, established in 1987, was that Fermat’s assertion is true
for “almost all” values of n; that is, as n increases the percentage of cases in which
the conjecture could fail approaches zero.

With the advent of computers, various numerical tests were devised to verify
Fermat’s conjecture for specific values of n. In 1977, S. S. Wagstaff took over 2 years,
using computing time on four machines on weekends and holidays, to show that the
conjecture held for all n ≤ 125000. Since that time, the range of exponents for which
the result was determined to be true has been extended repeatedly. By 1992, Fermat’s
conjecture was known to be true for exponents up to 4000000.

For a moment in the summer of 1993, it appeared that the final breakthrough
had been made. At the conclusion of three days of lectures in Cambridge, Eng-
land, Andrew Wiles of Princeton University stunned his colleagues by announcing
that he could favorably resolve Fermat’s conjecture. His proposed proof, which had
taken seven years to prepare, was an artful blend of many sophisticated techniques
developed by other mathematicians only within the preceding decade. The key in-
sight was to link equations of the kind posed by Fermat with the much-studied
theory of elliptic curves; that is, curves determined by cubic polynomials of the
form y2 = x3 + ax + b, where a and b are integers.

The overall structure and strategy of Wiles’s argument was so compelling that
mathematicians hailed it as almost certainly correct. But when the immensely com-
plicated 200-page manuscript was carefully scrutinized for hidden errors, it revealed
a subtle snag. No one claimed that the flaw was fatal, and bridging the gap was felt
to be feasible. Over a year later, Wiles provided a corrected, refined, and shorter
(125-page) version of his original proof to the enthusiastic reviewers. The revised
argument was seen to be sound, and Fermat’s seemingly simple claim was finally
settled.

The failure of Wiles’s initial attempt is not really surprising or unusual in math-
ematical research. Normally, proposed proofs are privately circulated and examined
for possible flaws months in advance of any formal announcement. In Wiles’s case,
the notoriety of one of number theory’s most elusive conjectures brought premature
publicity and temporary disappointment to the mathematical community.

To round out our historical digression, we might mention that in 1908 a prize
of 100,000 marks was bequeathed to the Academy of Science at Göttingen to be
paid for the first complete proof of Fermat’s conjecture. The immediate result was
a deluge of incorrect demonstrations by amateur mathematicians. Because only
printed solutions were eligible, Fermat’s conjecture is reputed to be the mathematical
problem for which the greatest number of false proofs have been published; indeed,
between 1908 and 1912 over one thousand alleged proofs appeared, mostly printed
as private pamphlets. Suffice it to say, interest declined as the German inflation
of the 1920s wiped out the monetary value of the prize. (With the introduction of
the Reichsmark and Deutsche Mark [DM] and after various currency revaluations,
the award was worth about DM 75,000 or $40,000 when it was presented to Wiles
in 1997.)

From x4 + y4 = z2, we move on to a closely related Diophantine equation,
namely, x4 − y4 = z2. The proof of its insolubility parallels that of Theorem 12.3,
but we give a slight variation in the method of infinite descent.
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Theorem 12.4 Fermat. The Diophantine equation x4 − y4 = z2 has no solution in
positive integers x , y, z.

Proof. The proof proceeds by contradiction. Let us assume that the equation admits
a solution in the positive integers and among these solutions x0, y0, z0 is one with
a least value of x ; in particular, this supposition forces x0 to be odd. (Why?) Were
gcd(x0, y0) = d > 1, then putting x0 = dx1, y0 = dy1, we would have d4(x4

1 − y4
1 ) =

z2
0, whence d2 | z0 or z0 = d2z1 for some z1 > 0. It follows that x1, y1, z1 provides a

solution to the equation under consideration with 0 < x1 < x0, which is an impossible
situation. Thus, we are free to assume a solution x0, y0, z0 in which gcd(x0, y0) = 1.
The ensuing argument falls into two stages, depending on whether y0 is odd or even.

First, consider the case of an odd integer y0. If the equation x4
0 − y4

0 = z2
0 is

written in the form z2
0 + (y2

0 )2 = (x2
0 )2, we see that z0, y2

0 , x2
0 constitute a primitive

Pythagorean triple. Theorem 12.1 asserts the existence of relatively prime integers
s > t > 0 for which

z0 = 2st

y2
0 = s2 − t2

x2
0 = s2 + t2

Thus, it appears that

s4 − t4 = (s2 + t2)(s2 − t2) = x2
0 y2

0 = (x0 y0)2

making s, t , x0 y0 a (positive) solution to the equation x4 − y4 = z2. Because

0 < s <
√

s2 + t2 = x0

we arrive at a contradiction to the minimal nature of x0.
For the second part of the proof, assume that y0 is an even integer. Using the

formulas for primitive Pythagorean triples, we now write

y2
0 = 2st

z0 = s2 − t2

x2
0 = s2 + t2

where s may be taken to be even and t to be odd. Then, in the relation y2
0 = 2st , we have

gcd(2s, t) = 1. The now-customary application of Lemma 2 tells us that 2s and t are
each squares of positive integers; say, 2s = w2, t = v2. Because w must of necessity
be an even integer, set w = 2u to get s = 2u2. Therefore,

x2
0 = s2 + t2 = 4u4 + v4

and so 2u2, v2, x0 forms a primitive Pythagorean triple. Falling back on Theorem 12.1
again, there exist integers a > b > 0 for which

2u2 = 2ab

v2 = a2 − b2

x0 = a2 + b2

where gcd(a, b) = 1. The equality u2 = ab ensures that a and b are perfect squares,
so that a = c2 and b = d2. Knowing this, the rest of the proof is easy; for, upon
substituting,

v2 = a2 − b2 = c4 − d4
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The result is a new solution c, d, v of the given equation x4 − y4 = z2 and what is
more, a solution in which

0 < c = √
a < a2 + b2 = x0

contrary to our assumption regarding x0.
The only resolution of these contradictions is that the equation x4 − y4 = z2

cannot be satisfied in the positive integers.

In the margin of his copy of Diophantus’s Arithmetica, Fermat states and proves
the following: the area of a right triangle with rational sides cannot be the square of a
rational number. Clearing of fractions, this reduces to a theorem about Pythagorean
triangles, to wit, Theorem 12.5.

Theorem 12.5. The area of a Pythagorean triangle can never be equal to a perfect
(integral) square.

Proof. Consider a Pythagorean triangle whose hypotenuse has length z and other two
sides have lengths x and y, so that x2 + y2 = z2. The area of the triangle in question
is 1

2 xy, and if this were a square, say u2, it would follow that 2xy = 4u2. By adding
and subtracting the last-written equation from x2 + y2 = z2, we are led to

(x + y)2 = z2 + 4u2 and (x − y)2 = z2 − 4u2

When these last two equations are multiplied together, the outcome is that two fourth
powers have as their difference a square:

(x2 − y2)2 = z4 − 16u4 = z4 − (2u)4

Because this amounts to an infringement on Theorem 12.4, there can be no Pythagorean
triangle whose area is a square.

There are a number of simple problems pertaining to Pythagorean triangles that
still await solution. The corollary to Theorem 12.3 may be expressed by saying that
there exists no Pythagorean triangle all the sides of which are squares. However,
it is not difficult to produce Pythagorean triangles whose sides, if increased by 1,
are squares; for instance, the triangles associated with the triples 132 − 1, 102 − 1,
142 − 1, and 2872 − 1, 2652 − 1, 3292 − 1. An obvious—and as yet unanswered—
question is whether there are an infinite number of such triangles. We can find
Pythagorean triangles each side of which is a triangular number. [By a triangular
number, we mean an integer of the form tn = n(n + 1)/2.] An example of such
is the triangle corresponding to t132, t143, t164. It is not known if infinitely many
Pythagorean triangles of this type exist.

As a closing comment, we should observe that all the effort expended on attempt-
ing to prove Fermat’s conjecture has been far from wasted. The new mathematics
that was developed as a by-product laid the foundations for algebraic number theory
and the ideal theory of modern abstract algebra. It seems fair to say that the value of
these far exceeds that of the conjecture itself.

Another challenge to number theorists, somewhat akin to Fermat’s conjecture,
concerns the Catalan equation. Consider for the moment the squares and cubes of
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positive integers in increasing order:

1, 4, 8, 9, 16, 25, 27, 36, 49, 64, 81, 100, . . .

We notice that 8 and 9 are consecutive integers in this sequence. The medieval
astronomer Levi ben Gershon (1288–1344) proved that there are no other consecutive
powers of 2 and 3; to put it another way, he showed that if 3m − 2n = ±1, with
m > 1 and n > 1, then m = 2 and n = 3. In 1738, Euler, using Fermat’s method
of infinite descent, dealt with the equation x3 − y2 = ±1, proving that x = 2 and
y = 3. Catalan himself contributed little more to the consecutive-power problem
than the assertion (1844) that the only solution of the equation xm − yn = 1 in
integers x , y, m, n, all greater than 1, is m = y = 2, n = x = 3. This statement, now
known as Catalan’s conjecture, was proved, in 2002.

Over the years, the Catalan equation xm − yn = 1 had been shown to be impos-
sible of solution for special values of m and n. For example in 1850, V. A. Lebesgue
proved that xm − y2 = 1 admits no solution in the positive integers for m �= 3; but,
it remained until 1964 to show that the more difficult equation x2 − yn = 1 is not
solvable for n �= 3. The cases x3 − yn = 1 and xm − y3 = 1, with m �= 2, were suc-
cessfully resolved in 1921. The most striking result, obtained by R. Tijdeman in
1976, is that xm − yn = 1 has only a finite number of solutions, all of which are
smaller than some computable constant C > 0; that is, xm, yn < C .

Suppose that Catalan’s equation did have a solution other than 32 − 23 = 1.
If p and q are primes dividing m and n respectively, then xm/p and yn/q would
provide a solution to the equation u p − vq = 1. What needed to be shown was that
this equation was not solvable in integers u, v ≥ 2 and distinct primes p, q ≥ 5. One
approach called for obtaining explicit bounds on the possible size of the exponents. A
series of investigations continually sharpened the restrictions until by the year 2000
it was known that 3 · 108 < p < (7.15)1011 and 3.108 < q < (7.75)1016. Thus, the
Catalan conjecture could in principle be settled by exhaustive computer calculations;
but until the upper bound was lowered, this would take a long time.

In 2000, Preda Mihailescu proved that for a Catalan solution to exist, p and q
must satisfy the simultaneous congruences

pq−1 ≡ 1(mod q2) and q p−1 ≡ 1(mod p2)

These are known as double Wieferich primes, after Arthur Wieferich, who inves-
tigated (1909) the congruence 2p−1 ≡ 1 (mod p2). Such pairs of primes are rare,
with only six pairs having been identified so far. Furthermore, as each of these 12
primes is less than 3 · 108, none satisfied the known restrictions. Taking advantage
of his results on Wieferich primes, Mihailescu continued to work on the problem. He
finally settled the famous question early in the following year: the only consecutive
powers are 8 and 9.

One interesting consequence of these results is that no Fermat number Fn =
22n + 1 can be a power of another integer, the exponent being greater than 1. For if
Fn = am , with m ≥ 2, then am − (22n−1

)2 = 1, which would imply that the equation
xm − y2 = 1 has a solution.
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PROBLEMS 12.2

1. Show that the equation x2 + y2 = z3 has infinitely many solutions for x , y, z positive
integers.
[Hint: For any n ≥ 2, let x = n(n2 − 3) and y = 3n2 − 1.]

2. Prove the theorem: The only solutions in nonnegative integers of the equation x2 + 2y2 =
z2, with gcd(x, y, z) = 1, are given by

x = ±(2s2 − t2) y = 2st z = 2s2 + t2

where s, t are arbitrary nonnegative integers.
[Hint: If u, v , w are such that y = 2w , z + x = 2u, z − x = 2v , then the equation
becomes 2w2 = uv .]

3. In a Pythagorean triple x , y, z, prove that not more than one of x , y, or z can be a perfect
square.

4. Prove each of the following assertions:
(a) The system of simultaneous equations

x2 + y2 = z2 − 1 and x2 − y2 = w2 − 1

has infinitely many solutions in positive integers x , y, z, w .
[Hint: For any integer n ≥ 1, take x = 2n2 and y = 2n.]

(b) The system of simultaneous equations

x2 + y2 = z2 and x2 − y2 = w2

admits no solution in positive integers x , y, z, w .
(c) The system of simultaneous equations

x2 + y2 = z2 + 1 and x2 − y2 = w2 + 1

has infinitely many solutions in positive integers x , y, z, w .
[Hint: For any integer n ≥ 1, take x = 8n4 + 1 and y = 8n3.]

5. Use Problem 4 to establish that there is no solution in positive integers of the simultaneous
equations

x2 + y2 = z2 and x2 + 2y2 = w2

[Hint: Any solution of the given system also satisfies z2 + y2 = w2 and z2 − y2 = x2.]
6. Show that there is no solution in positive integers of the simultaneous equations

x2 + y2 = z2 and x2 + z2 = w2

hence, there exists no Pythagorean triangle whose hypotenuse and one of whose sides
form the sides of another Pythagorean triangle.
[Hint: Any solution of the given system also satisfies x4 + (wy)2 = z4.]

7. Prove that the equation x4 − y4 = 2z2 has no solutions in positive integers x , y, z.
[Hint: Because x , y must be both odd or both even, x2 + y2 = 2a2, x + y = 2b2,
x − y = 2c2 for some a, b, c; hence, a2 = b4 + c4.]

8. Verify that the only solution in relatively prime positive integers of the equation x4 + y4 =
2z2 is x = y = z = 1.
[Hint: Any solution of the given equation also satisfies the equation

z4 − (xy)4 =
(

x4 − y4

2

)2

.]
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9. Prove that the Diophantine equation x4 − 4y4 = z2 has no solution in positive integers
x , y, z.
[Hint: Rewrite the given equation as (2y2)2 + z2 = (x2)2 and appeal to Theorem 12.1.]

10. Use Problem 9 to prove that there exists no Pythagorean triangle whose area is twice a
perfect square.
[Hint: Assume to the contrary that x2 + y2 = z2 and 1

2 xy = 2w2. Then (x + y)2 =
z2 + 8w2, and (x − y)2 = z2 − 8w2. This leads to z4 − 4(2w)4 = (x2 − y2)2.]

11. Prove the theorem: The only solutions in positive integers of the equation

1

x2
+ 1

y2
= 1

z2
gcd(x, y, z) = 1

are given by

x = 2st(s2 + t2) y = s4 − t4 z = 2st(s2 − t2)

where s, t are relatively prime positive integers, one of which is even, with s > t .
12. Show that the equation 1/x4 + 1/y4 = 1/z2 has no solution in positive integers.
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CHAPTER

13
REPRESENTATION OF INTEGERS

AS SUMS OF SQUARES

The object of pure Physic is the unfolding of the laws of the intelligible world;
the object of pure Mathematic that of unfolding the laws of human intelligence.

J. J. SYLVESTER

13.1 JOSEPH LOUIS LAGRANGE

After the deaths of Descartes, Pascal, and Fermat, no French mathematician of
comparable stature appeared for over a century. In England, meanwhile, mathematics
was being pursued with restless zeal, first by Newton, then by Taylor, Stirling, and
Maclaurin, while Leibniz came upon the scene in Germany. Mathematical activity
in Switzerland was marked by the work of the Bernoullis and Euler. Toward the end
of the 18th century, Paris did again become the center of mathematical studies, as
Lagrange, Laplace, and Legendre brought fresh glory to France.

An Italian by birth, German by adoption, and Frenchman by choice, Joseph
Louis Lagrange (1736–1813) was, next to Euler, the foremost mathematician of the
18th century. When he entered the University of Turin, his great interest was in
physics, but, after chancing to read a tract by Halley on the merits of Newtonian
calculus, he became excited about the new mathematics that was transforming celes-
tial mechanics. He applied himself with such energy to mathematical studies that he
was appointed, at the age of 18, professor of geometry at the Royal Artillery School
in Turin. The French Academy of Sciences soon became accustomed to including
Lagrange among the competitors for its biennial prizes: between 1764 and 1788, he

261
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Joseph Louis Lagrange
(1736–1813)

(Dover Publications, Inc.)

won five of the coveted prizes for his applications of mathematics to problems in
astronomy.

In 1766, when Euler left Berlin for St. Petersburg, Frederick the Great arranged
for Lagrange to fill the vacated post, accompanying his invitation with a modest
message that said, “It is necessary that the greatest geometer of Europe should
live near the greatest of Kings.” (To D’Alembert, who had suggested Lagrange’s
name, the King wrote, “To your care and recommendation am I indebted for having
replaced a half-blind mathematician with a mathematician with both eyes, which will
especially please the anatomical members of my academy.”) For the next 20 years,
Lagrange served as director of the mathematics section of the Berlin Academy,
producing work of high distinction that culminated in his monumental treatise, the
Mécanique Analytique (published in 1788 in four volumes). In this work he unified
general mechanics and made of it, as the mathematician Hamilton was later to
say, “a kind of scientific poem.” Holding that mechanics was really a branch of pure
mathematics, Lagrange so completely banished geometric ideas from the Mécanique
Analytique that he could boast in the preface that not a single diagram appeared in
its pages.

Frederick the Great died in 1786, and Lagrange, no longer finding a sympathetic
atmosphere at the Prussian court, decided to accept the invitation of Louis XVI to
settle in Paris, where he took French citizenship. But the years of constant activity
had taken their toll: Lagrange fell into a deep mental depression that destroyed his
interest in mathematics. So profound was his loathing for the subject that the first
printed copy of the Mécanique Analytique—the work of a quarter century—lay
unexamined on his desk for more than two years. Strange to say, it was the turmoil
of the French Revolution that helped to awaken him from his lethargy. Following
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the abolition of all the old French universities (the Academy of Sciences was also
suppressed) in 1793, the revolutionists created two new schools, with the humble
titles of École Normale and École Polytechnique, and Lagrange was invited to lecture
on analysis. Although he had not lectured since his early days in Turin, having
been under royal patronage in the interim, he seemed to welcome the appointment.
Subject to constant surveillance, the instructors were pledged “neither to read nor
repeat from memory” and transcripts of their lectures as delivered were inspected
by the authorities. Despite the petty harassments, Lagrange gained a reputation as
an inspiring teacher. His lecture notes on differential calculus formed the basis of
another classic in mathematics, the Théorie des Fonctions Analytique (1797).

Although Lagrange’s research covered an extraordinarily wide spectrum, he
possessed, much like Diophantus and Fermat before him, a special talent for the
theory of numbers. His work here included: the first proof of Wilson’s theorem that
if n is a prime, then (n − 1)! ≡ −1 (mod n); the investigation of the conditions under
which ±2 and ±5 are quadratic residues or nonresidues of an odd prime (−1 and
±3 having been discussed by Euler); finding all integral solutions of the equation
x2 − ay2 = 1; and the solution of a number of problems posed by Fermat to the
effect that certain primes can be represented in particular ways (typical of these is
the result that asserts that every prime p ≡ 3 (mod 8) is of the form p = a2 + 2b2).
This chapter focuses on the discovery for which Lagrange has acquired his greatest
renown in number theory, the proof that every positive integer can be expressed as
the sum of four squares.

13.2 SUMS OF TWO SQUARES

Historically, a problem that has received a good deal of attention has been that of
representing numbers as sums of squares. In the present chapter, we develop enough
material to settle completely the following question: What is the smallest value n
such that every positive integer can be written as the sum of not more than n squares?
Upon examining the first few positive integers, we find that

1 = 12

2 = 12 + 12

3 = 12 + 12 + 12

4 = 22

5 = 22 + 12

6 = 22 + 12 + 12

7 = 22 + 12 + 12 + 12

Because four squares are needed in the representation of 7, a partial answer to
our question is that n ≥ 4. Needless to say, there remains the possibility that some
integers might require more than four squares. A justly famous theorem of Lagrange,
proved in 1770, asserts that four squares are sufficient; that is, every positive integer
is realizable as the sum of four squared integers, some of which may be 0 = 02. This
is our Theorem 13.7.
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To begin with simpler things, we first find necessary and sufficient conditions
that a positive integer be representable as the sum of two squares. The problem may
be reduced to the consideration of primes by the following lemma.

Lemma. If m and n are each the sum of two squares, then so is their product mn.

Proof. If m = a2 + b2 and n = c2 + d2 for integers a, b, c, d, then

mn = (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2

It is clear that not every prime can be written as the sum of two squares; for
instance, 3 = a2 + b2 has no solution for integral a and b. More generally, one can
prove Theorem 13.1.

Theorem 13.1. No prime p of the form 4k + 3 is a sum of two squares.

Proof. Modulo 4, we have a ≡ 0, 1, 2, or 3 for any integer a; consequently, a2 ≡ 0 or
1 (mod 4). It follows that, for arbitrary integers a and b,

a2 + b2 ≡ 0, 1, or 2 (mod 4)

Because p ≡ 3 (mod 4), the equation p = a2 + b2 is impossible.

On the other hand, any prime that is congruent to 1 modulo 4 is expressible as
the sum of two squared integers. The proof, in the form we shall give it, employs a
theorem on congruences due to the Norwegian mathematician Axel Thue. This, in
its turn, relies on Dirichlet’s famous pigeonhole principle.

Pigeonhole principle. If n objects are placed in m pigeonholes and if n > m, then
some pigeonhole will contain at least two objects.

Phrased in more mathematical terms, this simple principle asserts that if a set
with n elements is the union of m of its subsets and if n > m, then some subset has
more than one element.

Lemma (Thue). Let p be a prime and let gcd(a, p) = 1. Then the congruence

ax ≡ y (mod p)

admits a solution x0, y0, where

0 < |x0| <
√

p and 0 < |y0| <
√

p

Proof. Let k = [
√

p] + 1, and consider the set of integers

S = {ax − y|0 ≤ x ≤ k − 1, 0 ≤ y ≤ k − 1}
Because ax − y takes on k2 > p possible values, the pigeonhole principle guarantees
that at least two members of S must be congruent modulo p; call them ax1 − y1 and
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ax2 − y2, where x1 �= x2 or y1 �= y2. Then we can write

a(x1 − x2) ≡ y1 − y2 (mod p)

Setting x0 = x1 − x2 and y0 = y1 − y2, it follows that x0 and y0 provide a solution
to the congruence ax ≡ y (mod p). If either x0 or y0 is equal to zero, then the fact
that gcd(a, p) = 1 can be used to show that the other must also be zero, contrary to
assumption. Hence, 0 < |x0| ≤ k − 1 <

√
p and 0 < |y0| ≤ k − 1 <

√
p.

We are now ready to derive the theorem of Fermat that every prime of the form
4k + 1 can be expressed as the sum of squares of two integers. (In terms of priority,
Albert Girard recognized this fact several years earlier and the result is sometimes
referred to as Girard’s theorem.) Fermat communicated his theorem in a letter to
Mersenne, dated December 25, 1640, stating that he possessed an irrefutable proof.
However, the first published proof was given by Euler in 1754, who in addition
succeeded in showing that the representation is unique.

Theorem 13.2 Fermat. An odd prime p is expressible as a sum of two squares if
and only if p ≡ 1 (mod 4).

Proof. Although the “only if” part is covered by Theorem 13.1, let us give a differ-
ent proof here. Suppose that p can be written as the sum of two squares, let us say
p = a2 + b2. Because p is a prime, we have p � | a and p � | b. (If p | a, then p | b2,
and so p | b, leading to the contradiction that p2 | p.) Thus, by the theory of linear con-
gruences, there exists an integer c for which bc ≡ 1 (mod p). Modulo p, the relation
(ac)2 + (bc)2 = pc2 becomes

(ac)2 ≡ −1 (mod p)

making −1 a quadratic residue of p. At this point, the corollary to Theorem 9.2 comes
to our aid, for (−1/p) = 1 only when p ≡ 1 (mod 4).

For the converse, assume that p ≡ 1 (mod 4). Because −1 is a quadratic residue
of p, we can find an integer a satisfying a2 ≡ −1 (mod p); in fact, by Theorem 5.4,
a = [(p − 1)/2]! is one such integer. Now gcd(a, p) = 1, so that the congruence

ax ≡ y (mod p)

admits a solution x0, y0 for which the conclusion of Thue’s lemma holds. As a result,

−x2
0 ≡ a2x2

0 ≡ (ax0)2 ≡ y2
0 (mod p)

or x2
0 + y2

0 ≡ 0 (mod p). This says that

x2
0 + y2

0 = kp

for some integer k ≥ 1. Inasmuch as 0 < |x0| <
√

p and 0 < |y0| <
√

p, we obtain
0 < x2

0 + y2
0 < 2p, the implication of which is that k = 1. Consequently, x2

0 + y2
0 = p,

and we are finished.

Counting a2 and (−a)2 as the same, we have the following corollary.

Corollary. Any prime p of the form 4k + 1 can be represented uniquely (aside from
the order of the summands) as a sum of two squares.
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Proof. To establish the uniqueness assertion, suppose that

p = a2 + b2 = c2 + d2

where a, b, c, d are all positive integers. Then

a2d2 − b2c2 = p(d2 − b2) ≡ 0 (mod p)

whence ad ≡ bc (mod p) or ad ≡ −bc (mod p). Because a, b, c, d are all less than√
p, these relations imply that

ad − bc = 0 or ad + bc = p

If the second equality holds, then we would have ac = bd; for,

p2 = (a2 + b2)(c2 + d2) = (ad + bc)2 + (ac − bd)2

= p2 + (ac − bd)2

and so ac − bd = 0. It follows that either

ad = bc or ac = bd

Suppose, for instance, that ad = bc. Then a | bc, with gcd(a, b) = 1, which forces
a |, c; say, c = ka. The condition ad = bc = b(ka) then reduces to d = bk. But

p = c2 + d2 = k2(a2 + b2)

implies that k = 1. In this case, we get a = c and b = d . By a similar argument, the
condition ac = bd leads to a = d and b = c. What is important is that, in either event,
our two representations of the prime p turn out to be identical.

Let us follow the steps in Theorem 13.2, using the prime p = 13. One choice
for the integer a is 6! = 720. A solution of the congruence 720x ≡ y (mod 13), or
rather,

5x ≡ y (mod 13)

is obtained by considering the set

S = {5x − y | 0 ≤ x, y < 4}
The elements of S are just the integers

0 5 10 15

−1 4 9 14

−2 3 8 13

−3 2 7 12

which, modulo 13, become

0 5 10 2

12 4 9 1

11 3 8 0

10 2 7 12
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Among the various possibilities, we have

5 · 1 − 3 ≡ 2 ≡ 5 · 3 − 0 (mod 13)

or

5(1 − 3) ≡ 3 (mod 13)

Thus, we may take x0 = −2 and y0 = 3 to obtain

13 = x2
0 + y2

0 = 22 + 32

Remark. Some authors would claim that any prime p ≡ 1 (mod 4) can be written as
a sum of squares in eight ways. For with p = 13, we have

13 = 22 + 33 = 22 + (−3)2 = (−2)2 + 32 = (−2)2 + (−3)2

= 32 + 22 = 32 + (−2)2 = (−3)2 + 22 = (−3)2 + (−2)2

Because all eight representations can be obtained from any one of them by interchang-
ing the signs of 2 and 3 or by interchanging the summands, there is “essentially” only
one way of doing this. Thus, from our point of view, 13 is uniquely representable as
the sum of two squares.

We have shown that every prime p such that p ≡ 1 (mod 4) is expressible as
the sum of two squares. But other integers also enjoy this property; for instance,

10 = 12 + 32

The next step in our program is to characterize explicitly those positive integers that
can be realized as the sum of two squares.

Theorem 13.3. Let the positive integer n be written as n = N 2m, where m is square-
free. Then n can be represented as the sum of two squares if and only if m contains no
prime factor of the form 4k + 3.

Proof. To start, suppose that m has no prime factor of the form 4k + 3. If m = 1 then
n = N 2 + 02, and we are through. In the case in which m > 1, let m = p1 p2 · · · pr be
the factorization of m into a product of distinct primes. Each of these primes pi , being
equal to 2 or of the form 4k + 1, can be written as the sum of two squares. Now, the
identity

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2

shows that the product of two (and, by induction, any finite number) integers, each
of which is representable as a sum of two squares, is likewise so representable. Thus,
there exist integers x and y satisfying m = x2 + y2. We end up with

n = N 2m = N 2(x2 + y2) = (N x)2 + (N y)2

a sum of two squares.
Now for the opposite direction. Assume that n can be represented as the sum of

two squares

n = a2 + b2 = N 2m
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and let p be any odd prime divisor of m (without loss of generality, it may be assumed
that m > 1). If d = gcd(a, b), then a = rd , b = sd, where gcd(r, s) = 1. We get

d2(r2 + s2) = N 2m

and so, m being square-free, d2 | N 2. But then

r2 + s2 =
(

N 2

d2

)
m = tp

for some integer t , which leads to

r2 + s2 ≡ 0 (mod p)

Now the condition gcd(r, s) = 1 implies that one of r or s, say r , is relatively prime
to p. Let r ′ satisfy the congruence

rr ′ ≡ 1 (mod p)

When the equation r2 + s2 ≡ 0 (mod p) is multiplied by (r ′)2, we obtain

(sr ′)2 + 1 ≡ 0 (mod p)

or, to put it differently, (−1/p) = 1. Because −1 is a quadratic residue of p, Theorem
9.2 ensures that p ≡ 1 (mod 4). The implication of our reasoning is that there is no
prime of the form 4k + 3 that divides m.

The following is a corollary to the preceding analysis.

Corollary. A positive integer n is representable as the sum of two squares if and only
if each of its prime factors of the form 4k + 3 occurs to an even power.

Example 13.1. The integer 459 cannot be written as the sum of two squares, because
459 = 33 · 17, with the prime 3 occurring to an odd exponent. On the other hand,
153 = 32 · 17 admits the representation

153 = 32(42 + 12) = 122 + 32

Somewhat more complicated is the example n = 5 · 72 · 13 · 17. In this case, we have

n = 72 · 5 · 13 · 17 = 72(22 + 12)(32 + 22)(42 + 12)

Two applications of the identity appearing in Theorem 13.3 give

(32 + 22)(42 + 12) = (12 + 2)2 + (3 − 8)2 = 142 + 52

and

(22 + 12)(142 + 52) = (28 + 5)2 + (10 − 14)2 = 332 + 42

When these are combined, we end up with

n = 72(332 + 42) = 2312 + 282

There exist certain positive integers (obviously, not primes of the form 4k + 1)
that can be represented in more than one way as the sum of two squares. The
smallest is

25 = 42 + 32 = 52 + 02
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If a ≡ b (mod 2), then the relation

ab =
(

a + b

2

)2

−
(

a − b

2

)2

allows us to manufacture a variety of such examples. Take n = 153 as an illustration;
here,

153 = 17 · 9 =
(

17 + 9

2

)2

−
(

17 − 9

2

)2

= 132 − 42

and

153 = 51 · 3 =
(

51 + 3

2

)2

−
(

51 − 3

2

)2

= 272 − 242

so that

132 − 42 = 272 − 242

This yields the two distinct representations

272 + 42 = 242 + 132 = 745

At this stage, a natural question should suggest itself: What positive integers
admit a representation as the difference of two squares? We answer this below.

Theorem 13.4. A positive integer n can be represented as the difference of two squares
if and only if n is not of the form 4k + 2.

Proof. Because a2 ≡ 0 or 1 (mod 4) for all integers a, it follows that

a2 − b2 ≡ 0, 1, or 3 (mod 4)

Thus, if n ≡ 2 (mod 4), we cannot have n = a2 − b2 for any choice of a and b.
Turning affairs around, suppose that the integer n is not of the form 4k + 2; that

is to say, n ≡ 0, 1, or 3 (mod 4). If n ≡ 1 or 3 (mod 4), then n + 1 and n − 1 are both
even integers; hence, n can be written as

n =
(

n + 1

2

)2

−
(

n − 1

2

)2

a difference of squares. If n ≡ 0 (mod 4), then we have

n =
(n

4
+ 1

)2
−

(n

4
− 1

)2

Corollary. An odd prime is the difference of two successive squares.

Examples of this last corollary are afforded by

11 = 62 − 52 17 = 92 − 82 29 = 152 − 142
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Another point worth mentioning is that the representation of a given prime p as
the difference of two squares is unique. To see this, suppose that

p = a2 − b2 = (a − b)(a + b)

where a > b > 0. Because 1 and p are the only factors of p, necessarily we have

a − b = 1 and a + b = p

from which it may be inferred that

a = p + 1

2
and b = p − 1

2
Thus, any odd prime p can be written as the difference of the squares of two integers
in precisely one way; namely, as

p =
(

p + 1

2

)2

−
(

p − 1

2

)2

A different situation occurs when we pass from primes to arbitrary integers.
Suppose that n is a positive integer that is neither prime nor of the form 4k + 2.
Starting with a divisor d of n, put d ′ = n/d (it is harmless to assume that d ≥ d ′).
Now, if d and d ′ are both even, or both odd, then (d + d ′)/2 and (d − d ′)2 are
integers. Furthermore, we may write

n = dd ′ =
(

d + d ′

2

)2

−
(

d − d ′

2

)2

By way of illustration, consider the integer n = 24. Here,

24 = 12 · 2 =
(

12 + 2

2

)2

−
(

12 − 2

2

)2

= 72 − 52

and

24 = 6 · 4 =
(

6 + 4

2

)2

−
(

6 − 4

2

)2

= 52 − 12

giving us two representations for 24 as the difference of squares.

PROBLEMS 13.2

1. Represent each of the primes 113, 229, and 373 as a sum of two squares.
2. (a) It has been conjectured that there exist infinitely many prime numbers p such that

p = n2 + (n + 1)2 for some positive integer n; for example, 5 = 12 + 22 and 13 =
22 + 32. Find five more of these primes.

(b) Another conjecture is that there are infinitely many prime numbers p of the form
p = 22 + p2

1, where p1 is a prime. Find five such primes.
3. Establish each of the following assertions:

(a) Each of the integers 2n , where n = 1, 2, 3, . . . , is a sum of two squares.
(b) If n ≡ 3 or 6 (mod 9), then n cannot be represented as a sum of two squares.
(c) If n is the sum of two triangular numbers, then 4n + 1 is the sum of two squares.
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(d) Every Fermat number Fn = 22n + 1, where n ≥ 1, can be expressed as the sum of
two squares.

(e) Every odd perfect number (if one exists) is the sum of two squares.
[Hint: See the Corollary to Theorem 11.7.]

4. Prove that a prime p can be written as a sum of two squares if and only if the congruence
x2 + 1 ≡ 0 (mod p) admits a solution.

5. (a) Show that a positive integer n is a sum of two squares if and only if n = 2ma2b,
where m ≥ 0, a is an odd integer, and every prime divisor of b is of the form
4k + 1.

(b) Write each of the integers 3185 = 5 · 72 · 13; 39690 = 2 · 34 · 5 · 72; and 62920 =
23 · 5 · 112 · 13 as a sum of two squares.

6. Find a positive integer having at least three different representations as the sum of two
squares, disregarding signs and the order of the summands.
[Hint: Choose an integer that has three distinct prime factors, each of the form 4k + 1.]

7. If the positive integer n is not the sum of squares of two integers, show that n cannot be
represented as the sum of two squares of rational numbers.
[Hint: By Theorem 13.3, there is a prime p ≡ 3 (mod 4) and an odd integer k such that
pk | n, whereas pk+1 � | n. If n = (a/b)2 + (c/d)2, then p will occur to an odd power
on the left-hand side of the equation n(bd)2 = (ad)2 + (bc)2, but not on the right-hand
side.]

8. Prove that the positive integer n has as many representations as the sum of two squares
as does the integer 2n.
[Hint: Starting with a representation of n as a sum of two squares obtain a similar
representation for 2n, and conversely.]

9. (a) If n is a triangular number, show that each of the three successive integers 8n2,
8n2 + 1, 8n2 + 2 can be written as a sum of two squares.

(b) Prove that of any four consecutive integers, at least one is not representable as a sum
of two squares.

10. Prove the following:
(a) If a prime number is the sum of two or four squares of different primes, then one of

these primes must be equal to 2.
(b) If a prime number is the sum of three squares of different primes, then one of these

primes must be equal to 3.
11. (a) Let p be an odd prime. If p | a2 + b2, where gcd(a, b) = 1, prove that the prime

p ≡ 1 (mod 4).
[Hint: Raise the congruence a2 ≡ −b2 (mod p) to the power (p − 1)/2 and apply
Fermat’s theorem to conclude that (−1)(p−1)/2 = 1.]

(b) Use part (a) to show that any positive divisor of a sum of two relatively prime squares
is itself a sum of two squares.

12. Establish that every prime number p of the form 8k + 1 or 8k + 3 can be written as
p = a2 + 2b2 for some choice of integers a and b.
[Hint: Mimic the proof of Theorem 13.2.]

13. Prove the following:
(a) A positive integer is representable as the difference of two squares if and only if it is

the product of two factors that are both even or both odd.
(b) A positive even integer can be written as the difference of two squares if and only if

it is divisible by 4.
14. Verify that 45 is the smallest positive integer admitting three distinct representations as

the difference of two squares.
[Hint: See part (a) of the previous problem.]
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15. For any n > 0, show that there exists a positive integer that can be expressed in n distinct
ways as the difference of two squares.
[Hint: Note that, for k = 1, 2, . . . , n,

22n+1 = (22n−k + 2k−1)2 − (22n−k − 2k−1)2.]

16. Prove that every prime p ≡ 1 (mod 4) divides the sum of two relatively prime squares,
where each square exceeds 3.
[Hint: Given an odd primitive root r of p, we have rk ≡ 2 (mod p) for some k; hence
r2[k+(p−1)/4] ≡ −4 (mod p).]

17. For a prime p ≡ 1 or 3 (mod 8), show that the equation x2 + 2y2 = p has a solution.
18. The English number theorist G. H. Hardy relates the following story about his young

protégé Ramanujan: “I remember going to see him once when he was lying ill in Putney.
I had ridden in taxi-cab No. 1729, and remarked that the number seemed to me rather a
dull one, and that I hoped it was not an unfavorable omen. ‘No,’ he reflected, ‘it is a very
interesting number; it is the smallest number expressible as the sum of two cubes in two
different ways.”’ Verify Ramanujan’s assertion.

13.3 SUMS OF MORE THAN TWO SQUARES

Although not every positive integer can be written as the sum of two squares, what
about their representation in terms of three squares (02 still permitted)? With an
extra square to add, it seems reasonable that there should be fewer exceptions. For
instance, when only two squares are allowed, we have no representation for such
integers as 14, 33, and 67, but

14 = 32 + 22 + 12 33 = 52 + 22 + 22 67 = 72 + 32 + 32

It is still possible to find integers that are not expressible as the sum of three squares.
Theorem 13.5 speaks to this point.

Theorem 13.5. No positive integer of the form 4n(8m + 7) can be represented as the
sum of three squares.

Proof. To start, let us show that the integer 8m + 7 is not expressible as the sum of
three squares. For any integer a, we have a2 ≡ 0, 1, or 4 (mod 8). It follows that

a2 + b2 + c2 ≡ 0, 1, 2, 3, 4, 5, or 6 (mod 8)

for any choice of integers a, b, c. Because we have 8m + 7 ≡ 7 (mod 8), the equation
a2 + b2 + c2 = 8m + 7 is impossible.

Next, let us suppose that 4n(8m + 7), where n ≥ 1, can be written as

4n(8m + 7) = a2 + b2 + c2

Then each of the integers a, b, c must be even. Putting a = 2a1, b = 2b1, c = 2c1, we get

4n−1(8m + 7) = a2
1 + b2

1 + c2
1

If n − 1 ≥ 1, the argument may be repeated until 8m + 7 is eventually represented
as the sum of three squared integers; this, of course, contradicts the result of the first
paragraph.

We can prove that the condition of Theorem 13.5 is also sufficient in order that
a positive integer be realizable as the sum of three squares; however, the argument
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is much too difficult for inclusion here. Part of the trouble is that, unlike the case of
two (or even four) squares, there is no algebraic identity that expresses the product
of sums of three squares as a sum of three squares.

With this trace of ignorance left showing, let us make a few historical remarks.
Diophantus conjectured, in effect, that no number of the form 8m + 7 is the sum
of three squares, a fact easily verified by Descartes in 1638. It seems fair to credit
Fermat with being the first to state in full the criterion that a number can be written
as a sum of three squared integers if and only if it is not of the form 4n(8m + 7),
where m and n are nonnegative integers. This was proved in a complicated manner
by Legendre in 1798 and more clearly (but by no means easily) by Gauss in 1801.

As just indicated, there exist positive integers that are not representable as the
sum of either two or three squares (take 7 and 15, for simple examples). Things
change dramatically when we turn to four squares: there are no exceptions at all!

The first explicit reference to the fact that every positive integer can be written as
the sum of four squares, counting 02, was made by Bachet (in 1621) and he checked
this conjecture for all integers up to 325. Fifteen years later, Fermat claimed that
he had a proof using his favorite method of infinite descent. However, as usual, he
gave no details. Both Bachet and Fermat felt that Diophantus must have known the
result; the evidence is entirely conjectural: Diophantus gave necessary conditions in
order that a number be the sum of two or three squares, while making no mention
of a condition for a representation as a sum of four squares.

One measure of the difficulty of the problem is the fact that Euler, despite his
brilliant achievements, wrestled with it for more than 40 years without success.
Nonetheless, his contribution toward the eventual solution was substantial; Euler
discovered the fundamental identity that allows one to express the product of two
sums of four squares as such a sum, and the crucial result that the congruence
x2 + y2 + 1 ≡ 0 (mod p) is solvable for any prime p. A complete proof of the
four-square conjecture was published by Lagrange in 1772, who acknowledged his
indebtedness to the ideas of Euler. The next year, Euler offered a much simpler
demonstration, which is essentially the version to be presented here.

It is convenient to establish two preparatory lemmas, so as not to interrupt the
main argument at an awkward stage. The proof of the first contains the algebraic
identity (Euler’s identity) that allows us to reduce the four-square problem to the
consideration of prime numbers only.

Lemma 1 Euler. If the integers m and n are each the sum of four squares, then mn
is likewise so representable.

Proof. If m = a2
1 + a2

2 + a2
3 + a2

4 and n = b2
1 + b2

2 + b2
3 + b2

4 for integers ai , bi , then

mn = (
a2

1 + a2
2 + a2

3 + a2
4

)(
b2

1 + b2
2 + b2

3 + b2
4

)
= (a1b1 + a2b2 + a3b3 + a4b4)2

+ (a1b2 − a2b1 + a3b4 − a4b3)2

+ (a1b3 − a2b4 − a3b1 + a4b2)2

+ (a1b4 + a2b3 − a3b2 − a4b1)2
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We confirm this cumbersome identity by brute force: Just multiply everything out and
compare terms. The details are not suitable for the printed page.

Another basic ingredient in our development is Lemma 2.

Lemma 2. If p is an odd prime, then the congruence

x2 + y2 + 1 ≡ 0 (mod p)

has a solution x0, y0 where 0 ≤ x0 ≤ (p − 1)/2 and 0 ≤ y0 ≤ (p − 1)/2.

Proof. The idea of the proof is to consider the following two sets:

S1 =
{

1 + 02, 1 + 12, 1 + 22, . . . , 1 +
(

p − 1

2

)2
}

S2 =
{

−02, −12, −22, . . . ,−
(

p − 1

2

)2
}

No two elements of the set S1 are congruent modulo p. For if 1 + x2
1 ≡ 1 + x2

2 (mod p),
then either x1 ≡ x2 (mod p) or x1 ≡ −x2 (mod p). But the latter consequence is
impossible, because 0 < x1 + x2 < p (unless x1 = x2 = 0), whence x1 ≡ x2 (mod p),
which implies that x1 = x2. In the same vein, no two elements of S2 are congruent
modulo p.

Together S1 and S2 contain 2[1 + 1
2 (p − 1)] = p + 1 integers. By the pigeonhole

principle, some integer in S1 must be congruent modulo p to some integer in S2; that
is, there exist x0, y0 such that

1 + x2
0 ≡ −y2

0 (mod p)

where 0 ≤ x0 ≤ (p − 1)/2 and 0 ≤ y0 ≤ (p − 1)/2.

Corollary. Given an odd prime p, there exists an integer k < p such that kp is the
sum of four squares.

Proof. According to the theorem, we can find integers x0 and y0,

0 ≤ x0 <
p

2
0 ≤ y0 <

p

2
such that

x2
0 + y2

0 + 12 + 02 = kp

for a suitable choice of k. The restrictions on the size of x0 and y0 imply that

kp = x2
0 + y2

0 + 1 <
p2

4
+ p2

4
+ 1 < p2

and so k < p, as asserted in the corollary.

Example 13.2. We digress for a moment to look at an example. If we take p = 17,
then the sets S1 and S2 become

S1 = {1, 2, 5, 10, 17, 26, 37, 50, 65}
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and

S2 = {0, −1, −4, −9, −16, −25, −36, −49, −64}
Modulo 17, the set S1 consists of the integers 1, 2, 5, 10, 0, 9, 3, 16, 14, and those in S2

are 0, 16, 13, 8, 1, 9, 15, 2, 4. Lemma 2 tells us that some member 1 + x2 of the first
set is congruent to some member −y2 of the second set. We have, among the various
possibilities,

1 + 52 ≡ 9 ≡ −52 (mod 17)

or 1 + 52 + 52 ≡ 0 (mod 17). It follows that

3 · 17 = 12 + 52 + 52 + 02

is a multiple of 17 written as a sum of four squares.

The last lemma is so essential to our work that it is worth pointing out another
approach, this one involving the theory of quadratic residues. If p ≡ 1 (mod 4),
we may choose x0 to be a solution of x2 ≡ −1 (mod p) (this is permissible by the
corollary to Theorem 9.2) and y0 = 0 to get

x2
0 + y2

0 + 1 ≡ 0 (mod p)

Thus, it suffices to concentrate on the case p ≡ 3 (mod 4). We first pick the integer
a to be the smallest positive quadratic nonresidue of p (keep in mind that a ≥ 2,
because 1 is a quadratic residue). Then

(−a/p) = (−1/p)(a/p) = (−1)(−1) = 1

so that −a is a quadratic residue of p. Hence, the congruence

x2 ≡ −a (mod p)

admits a solution x0, with 0 < x0 ≤ (p − 1)/2. Now a − 1, being positive and
smaller than a, must itself be a quadratic residue of p. Thus, there exists an integer
y0, where 0 < y0 ≤ (p − 1)/2, satisfying

y2 ≡ a − 1 (mod p)

The conclusion is

x2
0 + y2

0 + 1 ≡ −a + (a − 1) + 1 ≡ 0 (mod p)

With these two lemmas among our tools, we now have the necessary information
to carry out a proof of the fact that any prime can be realized as the sum of four
squared integers.

Theorem 13.6. Any prime p can be written as the sum of four squares.

Proof. The theorem is certainly true for p = 2, because 2 = 12 + 12 + 02 + 02. Thus,
we may hereafter restrict our attention to odd primes. Let k be the smallest positive
integer such that kp is the sum of four squares; say,

kp = x2 + y2 + z2 + w2

By virtue of the foregoing corollary, k < p. The crux of our argument is that k = 1.
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We make a start by showing that k is an odd integer. For a proof by contradiction,
assume that k is even. Then x , y, z, w are all even; or all are odd; or two are even and
two are odd. In any event, we may rearrange them, so that

x ≡ y (mod 2) and z ≡ w (mod 2)

It follows that

1

2
(x − y)

1

2
(x + y)

1

2
(z − w)

1

2
(z + w)

are all integers and

1

2
(kp) =

(
x − y

2

)2

+
(

x + y

2

)2

+
(

z − w

2

)2

+
(

z + w

2

)2

is a representation of (k/2)p as a sum of four squares. This violates the minimal nature
of k, giving us our contradiction.

There still remains the problem of showing that k = 1. Assume that k �= 1; then
k, being an odd integer, is at least 3. It is therefore possible to choose integers a, b, c,
d such that

a ≡ x (mod k) b ≡ y (mod k) c ≡ z (mod k) d ≡ w (mod k)

and

|a| <
k

2
|b| <

k

2
|c| <

k

2
|d| <

k

2

(To obtain the integer a, for instance, find the remainder r when x is divided by k; put
a = r or a = r − k according as r < k/2 or r > k/2.) Then

a2 + b2 + c2 + d2 ≡ x2 + y2 + z2 + w2 ≡ 0 (mod k)

and therefore

a2 + b2 + c2 + d2 = nk

for some nonnegative integer n. Because of the restrictions on the size of a, b, c, d,

0 ≤ nk = a2 + b2 + c2 + d2 < 4

(
k

2

)2

= k2

We cannot have n = 0, because this would signify that a = b = c = d = 0 and, in
consequence, that k divides each of the integers x , y, z, w . Then k2 | kp, or k | p, which
is impossible in light of the inequality 1 < k < p. The relation nk < k2 also allows us
to conclude that n < k. In summary: 0 < n < k. Combining the various pieces, we get

k2np = (kp)(kn) = (x2 + y2 + z2 + w2)(a2 + b2 + c2 + d2)

= r2 + s2 + t2 + u2

where

r = xa + yb + zc + wd

s = xb − ya + zd − wc

t = xc − yd − za + wb

u = xd + yc − zb − wa
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It is important to observe that all four of r , s, t , u are divisible by k. In the case of the
integer r , for example, we have

r = xa + yb + zc + wd ≡ a2 + b2 + c2 + d2 ≡ 0 (mod k)

Similarly, s ≡ t ≡ u ≡ 0 (mod k). This leads to the representation

np =
( r

k

)2
+

( s

k

)2
+

(
t

k

)2

+
(u

k

)2

where r/k, s/k, t/k, u/k are all integers. Because 0 < n < k, we therefore arrive at
a contradiction to the choice of k as the smallest positive integer for which kp is the
sum of four squares. With this contradiction, k = 1, and the proof is finally complete.

This brings us to our ultimate objective, the classical result of Lagrange.

Theorem 13.7 Lagrange. Any positive integer n can be written as the sum of four
squares, some of which may be zero.

Proof. Clearly, the integer 1 is expressible as 1 = 12 + 02 + 02 + 02, a sum of four
squares. Assume that n > 1 and let n = p1 p2 · · · pr be the factorization of n into (not
necessarily distinct) primes. Because each pi is realizable as a sum of four squares,
Euler’s identity permits us to express the product of any two primes as a sum of four
squares. This, by induction, extends to any finite number of prime factors, so that
applying the identity r − 1 times, we obtain the desired representation for n.

Example 13.3. To write the integer 459 = 33 · 17 as the sum of four squares, we use
Euler’s identity as follows:

459 = 32 · 3 · 17

= 32(12 + 12 + 12 + 02)(42 + 12 + 02 + 02)

= 32[(4 + 1 + 0 + 0)2 + (1 − 4 + 0 − 0)2

+ (0 − 0 − 4 + 0)2 + (0 + 0 − 1 − 0)2]

= 32[52 + 32 + 42 + 12]

= 152 + 92 + 122 + 32

Lagrange’s theorem motivated the more general problem of representing each
positive integer as a four-variable expressions of the form

ax2 + by2 + cz2 + dw2

where a, b, c, d are given positive integers. In 1916, the famous Indian math-
ematician Srinivasa Ramanujan presented 53 such “universal quadratics,” four of
which had been previously known. For instance, the expression x2 + 2y2 + 3z2 +
8w2 yields all positive integers: the integer 39, say, can be produced as

39 = 22 + 2 · 02 + 3 · 32 + 8 · 12

In 2005, Manjul Bhargava proved that there are only 204 of the desired quadratics.
Finally, in a completion to the question, Bhargava and Jonathan Hanke found a
particular set of 29 positive integers that will serve as a check for any quadratic



P1: BINAYA KUMAR DASH/BINAYA KUMAR DASH P2: IML/OVY QC: IML/OVY T1: BINAYA KUMAR DASH

bur83147_ch13_261_282 Burton DQ032A-Elementary-v2.cls December 14, 2009 15:6

278 ELEMENTARY NUMBER THEORY

expression. If the quadratic expression can represent each of those 29 integers, it can
represent all positive integers.

Although squares have received all our attention so far, many of the ideas in-
volved generalize to higher powers.

In his book, Meditationes Algebraicae (1770), Edward Waring stated that each
positive integer is expressible as a sum of at most 9 cubes, also a sum of at most 19
fourth powers, and so on. This assertion has been interpreted to mean the following:
Can each positive integer be written as the sum of no more than a fixed number g(k)
of kth powers, where g(k) depends only on k, not the integer being represented? In
other words, for a given k, a number g(k) is sought such that every n > 0 can be
represented in at least one way as

n = ak
1 + ak

2 + · · · + ak
g(k)

where the ai are nonnegative integers, not necessarily distinct. The resulting problem
was the starting point of a large body of research in number theory on what has
become known as “Waring’s problem.” There seems little doubt that Waring had
limited numerical grounds in favor of his assertion and no shadow of a proof.

As we have reported in Theorem 13.7, g(2) = 4. Except for squares, the first case
of a Waring-type theorem actually proved is attributed to Liouville (1859): Every
positive integer is a sum of at most 53 fourth powers. This bound for g(4) is somewhat
inflated, and through the years it was progressively reduced. The existence of g(k)
for each value of k was resolved in the affirmative by Hilbert in 1909; unfortunately,
his proof relies on heavy machinery (including a 25-fold integral at one stage) and
is in no way constructive.

Once it is known that Waring’s problem admits a solution, a natural question
to pose is “How big is g(k)?” There is an extensive literature on this aspect of the
problem, but the question itself is still open. A sample result, due to Leonard Dickson,
is that g(3) = 9, whereas

23 = 23 + 23 + 13 + 13 + 13 + 13 + 13 + 13 + 13

and

239 = 43 + 43 + 33 + 33 + 33 + 33 + 13 + 13 + 13

are the only integers that actually require as many as 9 cubes in their representation;
each integer greater than 239 can be realized as the sum of at most 8 cubes. In 1942,
Linnik proved that only a finite number of integers need 8 cubes; from some point
onward 7 will suffice. Whether 6 cubes are also sufficient to obtain all but finitely
many positive integers is still unsettled.

The cases k = 4 and k = 5 have turned out to be the most subtle. For many years,
the best-known result was that g(4) lay somewhere in the range 19 ≤ g(4) ≤ 35,
whereas g(5) satisfied 37 ≤ g(5) ≤ 54. Subsequent work (1964) has shown that
g(5) = 37. The upper bound on g(4) was decreased dramatically during the 1970s,
the sharpest estimate being g(4) ≤ 22. It was also proved that every integer less than
10140 or greater than 10367 can be written as a sum of at most 19 fourth powers; thus, in
principle, g(4) could be calculated. The relatively recent (1986) announcement that,
in fact, 19 fourth powers suffice to represent all integers settled this case completely.
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As far as k ≥ 6 is concerned, it has been established that the formula

g(k) = [(3/2)k] + 2k − 2

holds, except possibly for a finite number of values of k. There is considerable
evidence to suggest that this expression is correct for all k.

For k ≥ 3, all sufficiently large integers require fewer than g(k) kth powers in
their representations. This suggests a general definition: Let G(k) denote the smallest
integer r with the property that every sufficiently large integer is the sum of at most r
kth powers. Clearly, G(k) ≤ g(k). Exact values of G(k) are known only in two cases,
namely, G(2) = 4 and G(4) = 16. Linnik’s result on cubes indicates that G(3) ≤ 7,
while as far back as 1851 Jacobi conjectured that G(3) ≤ 5. Although more than
half a century has passed without an improvement in the size of G(3), nevertheless,
it is felt that G(3) = 4. In recent years, the bounds G(5) ≤ 17 and G(6) ≤ 24 have
been established.

Below are listed known values and estimates for the first few g(k) and G(k):

g(2) = 4 G(2) = 4

g(3) = 9 4 ≤ G(3) ≤ 7

g(4) = 19 G(4) = 16

g(5) = 37 6 ≤ G(5) ≤ 17

g(6) = 73 9 ≤ G(6) ≤ 24

g(7) = 143 8 ≤ G(7) ≤ 33

g(8) = 279 32 ≤ G(8) ≤ 42

Another problem that has attracted considerable attention is whether an nth
power can be written as a sum of n nth powers, with n > 3. Progress was first made
in 1911 with the discovery of the smallest solution in fourth powers,

3534 = 304 + 1204 + 2724 + 3154

In fifth powers, the smallest solution is

725 = 195 + 435 + 465 + 475 + 675

However, for sixth or higher powers no solution is yet known.
There is a related question; it may be asked, “Can an nth power ever be the sum

of fewer than n nth powers?” Euler conjectured that this is impossible; however, in
1968, Lander and Parkin came across the representation

1445 = 275 + 845 + 1105 + 1335

With the subsequent increase in computer power and sophistication, N. Elkies was
able to show (1987) that for fourth powers there are infinitely many counterexamples
to Euler’s conjecture. The one with the smallest value is

4224814 = 958004 + 2175194 + 4145604
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PROBLEMS 13.3

1. Without actually adding the squares, confirm that the following relations hold:
(a) 12 + 22 + 32 + · · · + 232 + 242 = 702.
(b) 182 + 192 + 202 + · · · + 272 + 282 = 772.
(c) 22 + 52 + 82 + · · · + 232 + 262 = 482.
(d) 62 + 122 + 182 + · · · + 422 + 482 = 952 − 412.

2. Regiomontanus proposed the problem of finding 20 squares whose sum is a square greater
than 300,000. Furnish two solutions.
[Hint: Consider the identity

(
a2

1 + a2
2 + · · · + a2

n

)2 = (
a2

1 + a2
2 + · · · + a2

n−1 − a2
n

)2

+(2a1an)2 + (2a2an)2 + · · · + (2an−1an)2.]

3. If p = q2
1 + q2

2 + q2
3 , where p, q1, q2, and q3 are all primes, show that some qi = 3.

4. Establish that the equation a2 + b2 + c2 + a + b + c = 1 has no solution in the integers.
[Hint: The equation in question is equivalent to the equation

(2a + 1)2 + (2b + 1)2 + (2c + 1)2 = 7.]

5. For a given positive integer n, show that n or 2n is a sum of three squares.
6. An unanswered question is whether there exist infinitely many prime numbers p such

that p = n2 + (n + 1)2 + (n + 2)2, for some n > 0. Find three of these primes.
7. In our examination of n = 459, no representation as a sum of two squares was found.

Express 459 as a sum of three squares.
8. Verify each of the statements below:

(a) Every positive odd integer is of the form a2 + b2 + 2c2, where a, b, c are integers.
[Hint: Given n > 0, 4n + 2 can be written as 4n + 2 = x2 + y2 + z2, with x and y
odd and z even. Then

2n + 1 =
(

x + y

2

)2

+
(

x − y

2

)2

+ 2
( z

2

)2
.]

(b) Every positive integer is either of the form a2 + b2 + c2 or a2 + b2 + 2c2, where a,
b, c are integers.
[Hint: If n > 0 cannot be written as a sum a2 + b2 + c2, then it is of the form
4m(8k + 7). Apply part (a) to the odd integer 8k + 7.]

(c) Every positive integer is of the form a2 + b2 − c2, where a, b, c are integers.
[Hint: Given n > 0, choose a such that n − a2 is a positive odd integer and use
Theorem 13.4.]

9. Establish the following:
(a) No integer of the form 9k + 4 or 9k + 5 can be the sum of three or fewer cubes.

[Hint: Notice that a3 ≡ 0, 1, or 8 (mod 9) for any integer a.]
(b) The only prime p that is representable as the sum of two positive cubes is p = 2.

[Hint: Use the identity

a3 + b3 = (a + b)((a − b)2 + ab).]

(c) A prime p can be represented as the difference of two cubes if and only if it is of the
form p = 3k(k + 1) + 1, for some k.

10. Express each of the primes 7, 19, 37, 61, and 127 as the difference of two cubes.
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11. Prove that every positive integer can be represented as a sum of three or fewer triangular
numbers.
[Hint: Given n > 0, express 8n + 3 as a sum of three odd squares and then solve for n.]

12. Show that there are infinitely many primes p of the form p = a2 + b2 + c2 + 1, where
a, b, c are integers.
[Hint: By Theorem 9.8, there are infinitely many primes of the form p = 8k + 7. Write
p − 1 = 8k + 6 = a2 + b2 + c2 for some a, b, c.]

13. Express the integers 231 = 3 · 7 · 11, 391 = 17 · 23, and 2109 = 37 · 57 as sums of four
squares.

14. (a) Prove that every integer n ≥ 170 is a sum of five squares, none of which are equal
to zero.
[Hint: Write n − 169 = a2 + b2 + c2 + d2 for some integers a, b, c, d and consider
the cases in which one or more of a, b, c is zero.]

(b) Prove that any positive multiple of 8 is a sum of eight odd squares.
[Hint: Assuming n = a2 + b2 + c2 + d2, then 8n + 8 is the sum of the squares of
2a ± 1, 2b ± 1, 2c ± 1, and 2d ± 1.]

15. From the fact that n3 ≡ n (mod 6) conclude that every integer n can be represented as
the sum of the cubes of five integers, allowing negative cubes.
[Hint: Utilize the identity

n3 − 6k = n3 − (k + 1)3 − (k − 1)3 + k3 + k3.]

16. Prove that every odd integer is the sum of four squares, two of which are consecutive.
[Hint: For n > 0, 4n + 1 is a sum of three squares, only one being odd; notice that
4n + 1 = (2a)2 + (2b)2 + (2c + 1)2 gives

2n + 1 = (a + b)2 + (a − b)2 + c2 + (c + 1)2.]

17. Prove that there are infinitely many triangular numbers that are simultaneously express-
ible as the sum of two cubes and the difference of two cubes. Exhibit the representations
for one such triangular number.
[Hint: In the identity

(27k6)2 − 1 = (9k4 − 3k)3 + (9k3 − 1)3

= (9k4 + 3k)3 − (9k3 + 1)3

take k to be an odd integer to get

(2n + 1)2 − 1 = (2a)3 + (2b)3 = (2c)3 − (2d)3

or equivalently, tn = a3 + b3 = c3 − d3.]
18. (a) If n − 1 and n + 1 are both primes, establish that the integer 2n2 + 2 can be repre-

sented as the sum of 2, 3, 4, and 5 squares.
(b) Illustrate the result of part (a) in the cases in which n = 4, 6, and 12.
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CHAPTER

14
FIBONACCI NUMBERS

. . . what is physical is subject to the laws of mathematics, and what is
spiritual to the laws of God, and the laws of mathematics are but the

expression of the thoughts of God.
THOMAS HILL

14.1 FIBONACCI

Perhaps the greatest mathematician of the Middle Ages was Leonardo of Pisa (1180–
1250), who wrote under the name of Fibonacci—a contraction of “filius Bonacci,”
that is, Bonacci’s son. Fibonacci was born in Pisa and educated in North Africa,
where his father was in charge of a customhouse. In the expectation of entering
the mercantile business, the youth traveled about the Mediterranean visiting Spain,
Egypt, Syria, and Greece. The famous Liber Abaci, composed upon his return to Italy,
introduced the Latin West to Islamic arithmetic and algebraic mathematical practices.
A briefer work of Fibonacci’s, the Liber Quadratorum (1225), is devoted entirely
to Diophantine problems of second degree. It is regarded as the most important
contribution to Latin Middle-Ages number theory before the works of Bachet and
Fermat. Like those before him, Fibonacci allows (positive) real numbers as solutions.
One problem, for instance, calls for finding a square that remains square when
increased or decreased by 5; that is, obtain a simultaneous solution to the pair of
equations x2 + 5 = y2, x2 − 5 = z2, where x , y, z are unknowns. Fibonacci gave
41/12 as an answer, for

(41/12)2 + 5 = (49/12)2, (41/12)2 − 5 = (31/12)2

283
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Leonardo of Pisa (Fibonacci)
(1180--1250)

(David Eugene Smith Collection, Rare Book and
Manuscript Library, Columbia University)

Also noteworthy is the remarkably accurate estimate in 1224 of the only real root
of the cubic equation x3 + 2x2 + 10x = 20. His value, in decimal notation, of
1.3688081075 . . . , is correct to nine decimal places.

Christian Europe became acquainted with the Hindu-Arabic numerals through
the Liber Abaci, which was written in 1202 but survives only in a revised 1228
edition. (The word “Abaci” in the title does not refer to the abacus, but rather means
counting in general.) Fibonacci sought to explain the advantages of the Eastern
decimal system, with its positional notation and zero symbol, “in order that the
Latin race might no longer be deficient in that knowledge.” The first chapter of his
book opens with the following sentence:

These are the nine figures of the Indians:

9 8 7 6 5 4 3 2 1

With these nine figures, and with this sign 0 . . . any number may
be written, as will be demonstrated.

General acceptance of the new numerals had to wait for another two centuries.
In 1299, the city of Florence issued an ordinance forbidding merchants from us-
ing the Arabic symbols in bookkeeping, ordering them either to employ Roman
numerals or to write out numerical words in full. The decree was probably due to
the great variation in the shapes of certain digits—some quite different from those
used today—and the consequent opportunity for ambiguity, misunderstanding, and
outright fraud. While the zero symbol, for instance, might be changed to a 6 or a 9,
it is not so easy to falsify Roman numerals.

It is ironic that, despite his many achievements. Fibonacci is remembered today
mainly because the 19th century number theorist Edouard Lucas attached his name
to a certain infinite set of positive integers that arose in a trivial problem in the Liber
Abaci. This celebrated sequence of integers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

occurs in nature in a variety of unexpected ways. For instance, lilies have 3 petals,
buttercups 5, marigolds 13, asters 21, while most daisies have 34, 55, or 89 petals.
The seeds of a sunflower head radiate from its center in two families of interlaced
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spirals, one winding clockwise and the other counterclockwise. There are usually
34 spirals twisting clockwise and 55 in the opposite direction, although some large
heads have been found with 55 and 89 spirals present. The number of whorls of scale
of a pineapple or a fir cone also provides excellent examples of numbers appearing
in Fibonacci’s sequence.

14.2 THE FIBONACCI SEQUENCE

In the Liber Abaci, Fibonacci posed the following problem dealing with the number
of offspring generated by a pair of rabbits conjured up in the imagination:

A man put one pair of rabbits in a certain place entirely surrounded by a wall. How
many pairs of rabbits can be produced from that pair in a year, if the nature of these
rabbits is such that every month each pair bears a new pair which from the second
month on becomes productive?

Assuming that none of the rabbits dies, then a pair is born during the first month,
so that there are two pairs present. During the second month, the original pair has
produced another pair. One month later, both the original pair and the firstborn pair
have produced new pairs, so that three adult and two young pairs are present, and
so on. (The figures are tabulated in the chart below.) The point to bear in mind is
that each month the young pairs grow up and become adult pairs, making the new
“adult” entry the previous one plus the previous “young” entry. Each of the pairs
that was adult last month produces one young pair, so that the new “young” entry is
equal to the previous “adult” entry.

When continued indefinitely, the sequence encountered in the rabbit problem

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

is called the Fibonacci sequence and its terms the Fibonacci numbers. The position
of each number in this sequence is traditionally indicated by a subscript, so that
u1 = 1, u2 = 1, u3 = 2, and so forth, with un denoting the nth Fibonacci number.

Growth of rabbit colony

Months Adult pairs Young pairs Total

1 1 1 2
2 2 1 3
3 3 2 5
4 5 3 8
5 8 5 13
6 13 8 21
7 21 13 34
8 34 21 55
9 55 34 89

10 89 55 144
11 144 89 233
12 233 144 377
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The Fibonacci sequence exhibits an intriguing property, namely,

2 = 1 + 1 or u3 = u2 + u1

3 = 2 + 1 or u4 = u3 + u2

5 = 3 + 2 or u5 = u4 + u3

8 = 5 + 3 or u6 = u5 + u4

By this time, the general rule of formulation should be discernible:

u1 = u2 = 1 un = un−1 + un−2 for n ≥ 3

That is, each term in the sequence (after the second) is the sum of the two that
immediately precede it. Such sequences, in which from a certain point on every
term can be represented as a linear combination of preceding terms, are said to be
recursive sequences. The Fibonacci sequence is the first known recursive sequence
in mathematical work. Fibonacci himself was probably aware of the recursive nature
of his sequence, but it was not until 1634—by which time mathematical notation had
made sufficient progress—that the formula appeared in a posthumously published
paper by Albert Girard.

The Fibonacci numbers grow rapidly. A result indicating this behavior is that
u5n+2 > 10n for n ≥ 1, so that

u7 > 10, u12 > 100, u17 > 1000, u22 > 10000 . . .

The inequality can be established using induction on n, the case n = 1 being obvious
because u7 = 13 > 10. Now assume that the inequality holds for an arbitrary integer
n; we wish to show that it also holds for n + 1. The recursion rule uk = uk−1 + uk−2

can be used several times to express u5(n+1)+2 = u5n+7 in terms of previous Fibonacci
numbers to arrive at

u5n+7 = 8u5n+2 + 5u5n+1

> 8u5n+2 + 2(u5n+1 + u5n)

= 10u5n+2 > 10 · 10n = 10n+1

completing the induction step and the argument.
It may not have escaped attention that in the portion of the Fibonacci sequence

that we have written down, successive terms are relatively prime. This is no accident,
as is now proved.

Theorem 14.1. For the Fibonacci sequence, gcd(un, un+1) = 1 for every n ≥ 1.

Proof. Let us suppose that the integer d > 1 divides both un and un+1. Then their
difference un+1 − un = un−1 is also divisible by d . From this and from the relation
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un − un−1 = un−2, it may be concluded that d | un−2. Working backward, the same
argument shows that d | un−3, d | un−4, . . . , and finally that d | u1. But u1 = 1, which
is certainly not divisible by any d > 1. This contradiction ends our proof.

Because u3 = 2, u5 = 5, u7 = 13, and u11 = 89 are all prime numbers, we might
be tempted to guess that un is prime whenever the subscript n > 2 is a prime. This
conjecture fails at an early stage, for a little figuring indicates that

u19 = 4181 = 37 · 113

Not only is there no known device for predicting which un are prime, but it is not
even certain whether the number of prime Fibonacci numbers is infinite. Nonetheless,
there is a useful positive result whose cumbersome proof is omitted: for any prime
p, there are infinitely many Fibonacci numbers that are divisible by p and these are
all equally spaced in the Fibonacci sequence. To illustrate, 3 divides every fourth
term of the Fibonacci sequence, 5 divides every fifth term, and 7 divides every eighth
term.

With the exception of u1, u2, u6, and u12, each Fibonacci number has a “new”
prime factor, that is, a prime factor that does not occur in any Fibonacci number
with a smaller subscript. For example, 29 divides u14 = 377 = 13 · 29, but divides
no earlier Fibonacci number.

As we know, the greatest common divisor of two positive integers can be found
from the Euclidean Algorithm after finitely many divisions. By suitably choosing
the integers, the number of divisions required can be made arbitrarily large. The
precise statement is this: Given n > 0, there exist positive integers a and b such
that to calculate gcd(a, b) by means of the Euclidean Algorithm exactly n divisions
are needed. To verify the contention, it is enough to let a = un+2 and b = un+1.
The Euclidean Algorithm for obtaining gcd(un+2, un+1) leads to the system of
equations

un+2 = 1 · un+1 + un

un+1 = 1 · un + un−1

...

u4 = 1 · u3 + u2

u3 = 2 · u2 + 0

Evidently, the number of divisions necessary here is n. The reader will no doubt
recall that the last nonzero remainder appearing in the algorithm furnishes the value
of gcd(un+2, un+1). Hence,

gcd(un+2, un+1) = u2 = 1

which confirms anew that successive Fibonacci numbers are relatively prime.
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Suppose, for instance, that n = 6. The following calculations show that we need
6 divisions to find the greatest common divisor of the integers u8 = 21 and u7 = 13:

21 = 1 · 13 + 8

13 = 1 · 8 + 5

8 = 1 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0

Gabriel Lamé observed in 1844 that if n division steps are required in the Euclidean
Algorithm to compute gcd(a, b), where a > b > 0, then a ≥ un+2, b ≥ un+1.
Consequently, it was common at one time to call the sequence un the Lamé sequence.
Lucas discovered that Fibonacci had been aware of these numbers six centuries ear-
lier; and, in an article published in the inaugural volume (1878) of the American
Journal of Mathematics, he named it the Fibonacci sequence.

One of the striking features of the Fibonacci sequence is that the greatest common
divisor of two Fibonacci numbers is itself a Fibonacci number. The identity

um+n = um−1un + umun+1 (1)

is central to bringing out this fact. For fixed m ≥ 2, this identity is established by
induction on n. When n = 1, Eq. (1) takes the form

um+1 = um−1u1 + umu2 = um−1 + um

which is obviously true. Let us therefore assume that the formula in question holds
when n is one of the integers 1, 2, . . . , k and try to verify it when n = k + 1. By the
induction assumption,

um+k = um−1uk + umuk+1

um+(k−1) = um−1uk−1 + umuk

Addition of these two equations gives us

um+k + um+(k−1) = um−1(uk + uk−1) + um(uk+1 + uk)

By the way in which the Fibonacci numbers are defined, this expression is the same
as

um+(k+1) = um−1uk+1 + umuk+2

which is precisely Eq. (1) with n replaced by k + 1. The induction step is thus
complete and Eq. (1) holds for all m ≥ 2 and n ≥ 1.
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One example of Eq. (1) should suffice:

u9 = u6+3 = u5u3 + u6u4 = 5 · 2 + 8 · 3 = 34

The next theorem, aside from its importance to the ultimate result we seek, has an
interest all its own.

Theorem 14.2. For m ≥ 1, n ≥ 1, umn is divisible by um .

Proof. We again argue by induction on n, the result being certainly true when n = 1. For
our induction hypothesis, let us assume that umn is divisible by um for n = 1, 2, . . . , k.
The transition to the case um(k+1) = umk+m is realized using Eq. (1); indeed,

um(k+1) = umk−1um + umkum+1

Because um divides umk by supposition, the right-hand side of this expression (and,
hence, the left-hand side) must be divisible by um . Accordingly, um | um(k+1), which
was to be proved.

Preparatory to evaluating gcd(um, un), we dispose of a technical lemma.

Lemma. If m = qn + r , then gcd(um, un) = gcd(ur , un).

Proof. To begin with, Eq. (1) allows us to write

gcd(um, un) = gcd(uqn+r , un)

= gcd(uqn−1ur + uqnur+1, un)

An appeal to Theorem 14.2 and the fact that gcd(a + c, b) = gcd(a, b), whenever b | c,
gives

gcd(uqn−1ur + uqnur+1, un) = gcd(uqn−1ur , un)

Our claim is that gcd(uqn−1, un) = 1. To see this, set d = gcd(uqn−1, un). The
relations d | un and un | uqn imply that d | uqn , and therefore d is a (positive) com-
mon divisor of the successive Fibonacci numbers uqn−1 and uqn . Because successive
Fibonacci numbers are relatively prime, the effect of this is that d = 1.

To finish the proof, the reader is left the task of showing that when gcd(a, c) = 1,
then gcd(a, bc) = gcd(a, b). Knowing this, we can immediately pass on to

gcd(um, un) = gcd(uqn−1ur , un) = gcd(ur , un)

the desired equality.

This lemma leaves us in the happy position in which all that is required is to put
the pieces together.

Theorem 14.3. The greatest common divisor of two Fibonacci numbers is again a
Fibonacci number; specifically,

gcd(um, un) = ud where d = gcd(m, n)
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Proof. Assume that m ≥ n. Applying the Euclidean Algorithm to m and n, we get the
following system of equations:

m = q1n + r1 0 < r1 < n

n = q2r1 + r2 0 < r2 < r1

r1 = q3r2 + r3 0 < r3 < r2

...

rn−2 = qnrn−1 + rn 0 < rn < rn−1

rn−1 = qn+1rn + 0

In accordance with the previous lemma,

gcd(um, un) = gcd(ur1 , un) = gcd(ur1 , ur2 ) = · · · = gcd(urn−1 , urn )

Because rn | rn−1, Theorem 14.2 tells us that urn | urn−1 , whence gcd(urn−1 , urn ) = urn .
But rn , being the last nonzero remainder in the Euclidean Algorithm for m and n, is
equal to gcd(m, n). Tying up the loose ends, we get

gcd(um, un) = ugcd(m,n)

and in this way the theorem is established.

It is interesting to note that the converse of Theorem 14.2 can be obtained from
the theorem just proved; in other words, if un is divisible by um , then we can conclude
that n is divisible by m. Indeed, if um | un , then gcd(um, un) = um . But according to
Theorem 14.3, the value of gcd(um, un) must be equal to ugcd(m,n). The implication
of all this is that gcd(m, n) = m, from which it follows that m | n. We summarize
these remarks in the following corollary.

Corollary. In the Fibonacci sequence, um | un if and only if m | n for n ≥ m ≥ 3.

A good illustration of Theorem 14.3 is provided by calculating gcd(u16, u12) =
gcd(987, 144). From the Euclidean Algorithm,

987 = 6 · 144 + 123

144 = 1 · 123 + 21

123 = 5 · 21 + 18

21 = 1 · 18 + 3

18 = 6 · 3 + 0

and therefore gcd(987, 144) = 3. The net result is that

gcd(u16, u12) = 3 = u4 = ugcd(16,12)

as asserted by Theorem 14.3.
When the subscript n > 4 is composite, then un will be composite. For if n = rs,

where r ≥ s ≥ 2, the last corollary implies that ur |un and us |un . To illustrate: u4|u20

and u5|u20 or, phrased differently, both 3 and 5 divide 6765. Thus, primes can occur
in the Fibonacci sequence only for prime subscripts—the exceptions being u2 = 1
and u4 = 3. But when p is prime, u p may very well be composite, as we saw with
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u19 = 37 · 113. Prime Fibonacci numbers are somewhat sparse; only 42 of them are
presently known, the largest being the 126377-digit u604711.

Let us present one more proof of the infinitude of primes, this one involv-
ing Fibonacci numbers. Suppose that there are only finitely many primes, say r
primes 2, 3, 5, . . . , pr , arranged in ascending order. Next, consider the correspond-
ing Fibonacci numbers u2, u3, u5, . . . , u pr . According to Theorem 14.3, these are
relatively prime in pairs. Exclude u2 = 1. Each of the remaining r − 1 numbers is
divisible by a single prime with the possible exception that one of them has two
prime factors (there being only r primes in all). A contradiction occurs because
u37 = 73 · 149 · 2221 has three prime factors.

PROBLEMS 14.2

1. Given any prime p �= 5, it is known that either u p−1 or u p+1 is divisible by p. Confirm
this in the cases of the primes 7, 11, 13, and 17.

2. For n = 1, 2, . . . , 10, show that 5u2
n + 4(−1)n is always a perfect square.

3. Prove that if 2 | un , then 4 | (u2
n+1 − u2

n−1); and similarly, if 3 | un , then 9 | (u3
n+1 − u3

n−1).
4. For the Fibonacci sequence, establish the following:

(a) un+3 ≡ un (mod 2), hence u3, u6, u9, . . . are all even integers.
(b) un+5 ≡ 3un (mod 5), hence u5, u10, u15, . . . are all divisible by 5.

5. Show that the sum of the squares of the first n Fibonacci numbers is given by the formula

u2
1 + u2

2 + u2
3 + · · · + u2

n = unun+1

[Hint: For n ≥ 2, u2
n = unun+1 − unun−1.]

6. Utilize the identity in Problem 5 to prove that for n ≥ 3

u2
n+1 = u2

n + 3u2
n−1 + 2

(
u2

n−2 + u2
n−3 + · · · + u2

2 + u2
1

)
7. Evaluate gcd(u9, u12), gcd(u15, u20), and gcd(u24, u36).
8. Find the Fibonacci numbers that divide both u24 and u36.
9. Use the fact that um | un if and only if m | n to verify each of the assertions below:

(a) 2 | un if and only if 3 | n.
(b) 3 | un if and only if 4 | n.
(c) 5 | un if and only if 5 | n.
(d) 8 | un if and only if 6 | n.

10. If gcd(m, n) = 1, prove that umun divides umn for all m, n ≥ 1.
11. It can be shown that when un is divided by um(n > m), then the remainder r is a Fibonacci

number or um − r is a Fibonacci number. Give examples illustrating both cases.
12. It was proved in 1989 that there are only five Fibonacci numbers that are also triangular

numbers. Find them.
13. For n ≥ 1, prove that 2n−1un ≡ n (mod 5).

[Hint: Use induction and the fact that 2nun+1 = 2(2n−1un) + 4(2n−2un−1).]
14. If un < a < un+1 < b < un+2 for some n ≥ 4, establish that the sum a + b cannot be

a Fibonacci number.
15. Prove that there is no positive integer n for which

u1 + u2 + u3 + · · · + u3n = 16!

[Hint: By Wilson’s theorem, the equation is equivalent to u3n+2 ≡ 0 (mod 17). Because
17 | u9, 17 | um if and only if 9 | m.]

16. If 3 divides n + m, show that un−m−1un + un−mun+1 is an even integer.
17. For n ≥ 1, verify that there exist n consecutive composite Fibonacci numbers.
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18. Prove that 9 | un+24 if and only if 9 | un .
[Hint: Use Eq. (1) to establish that un+24 ≡ un (mod 9).]

19. Use induction to show that u2n ≡ n(−1)n+1 (mod 5) for n ≥ 1.
20. Derive the identity

un+3 = 3un+1 − un−1 n ≥ 2

[Hint: Apply Eq. (1).]

14.3 CERTAIN IDENTITIES INVOLVING FIBONACCI NUMBERS

We move on and develop several of the basic identities involving Fibonacci numbers;
these should be useful in doing the problems at the end of the section. One of the
simplest asserts that the sum of the first n Fibonacci numbers is equal to un+2 − 1.
For instance, when the first eight Fibonacci numbers are added together, we obtain

1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 = 54 = 55 − 1 = u10 − 1

That this is typical of the general situation follows by adding the relations

u1 = u3 − u2

u2 = u4 − u3

u3 = u5 − u4

...

un−1 = un+1 − un

un = un+2 − un+1

On doing so, the left-hand side yields the sum of the first n Fibonacci numbers,
whereas on the right-hand side the terms cancel in pairs leaving only un+2 − u2. But
u2 = 1. The consequence is that

u1 + u2 + u3 + · · · + un = un+2 − 1 (2)

Another Fibonacci property worth recording is the identity

u2
n = un+1un−1 + (−1)n−1 (3)

This may be illustrated by taking, say, n = 6 and n = 7; then

u2
6 = 82 = 13 · 5 − 1 = u7u5 − 1

u2
7 = 132 = 21 · 8 + 1 = u8u6 + 1

The plan for establishing Eq. (3) is to start with the equation

u2
n − un+1un−1 = un(un−1 + un−2) − un+1un−1

= (un − un+1)un−1 + unun−2

From the rule of formation of the Fibonacci sequence, we have un+1 = un + un−1,
and so the expression in parentheses may be replaced by the term −un−1 to produce

u2
n − un+1un−1 = (−1)

(
u2

n−1 − unun−2
)

The important point is that except for the initial sign the right-hand side of this
equation is the same as the left-hand side, but with all the subscripts decreased by 1.
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By repeating the argument u2
n−1 − unun−2 can be shown to be equal to the expression

(−1)(u2
n−2 − un−1un−3), whence

u2
n − un+1un−1 = (−1)2

(
u2

n−2 − un−1un−3
)

Continue in this pattern. After n − 2 such steps, we arrive at

u2
n − un+1un−1 = (−1)n−2

(
u2

2 − u3u1
)

= (−1)n−2(12 − 2 · 1) = (−1)n−1

which we sought to prove.
For n = 2k, Eq. (3) becomes

u2
2k = u2k+1u2k−1 − 1 (4)

While we are on the subject, we might observe that this last identity is the basis of
a well-known geometric deception whereby a square 8 units by 8 can be broken up
into pieces that seemingly fit together to form a rectangle 5 by 13. To accomplish
this, divide the square into four parts as shown below on the left and rearrange them
as indicated on the right.

8

5

53

3

3

5 5

5a

c

b

13 d

5

The area of the square is 82 = 64, whereas that of the rectangle that seems to
have the same constituent parts is 5 · 13 = 65, and so the area has apparently been
increased by 1 square unit. The puzzle is easy to explain: the points a, b, c, d do not
all lie on the diagonal of the rectangle, but instead are the vertices of a parallelogram
whose area, of course, is exactly equal to the extra unit of area.

The foregoing construction can be carried out with any square whose sides are
equal to a Fibonacci number u2k . When partitioned in the manner indicated

B

DC

Au2k – 2

u2k

u2k – 1

u2k – 1

u2k – 1
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the pieces may be reformed to produce a rectangle having a slot in the shape of a
slim parallelogram (our figure is greatly exaggerated):

A

B
C

D

u2k + 1

u2k

u2k – 1

u2k – 1

The identity u2k−1u2k+1 − 1 = u2
2k may be interpreted as asserting that the area of

the rectangle minus the area of the parallelogram is precisely equal to the area of the
original square. It can be shown that the height of the parallelogram—that is, the
width of the slot at its widest point—is

1√
u2

2k + u2
2k−2

When u2k has a reasonably large value (say, u2k = 144, so that u2k−2 = 55), the slot
is so narrow that it is almost imperceptible to the eye.

The First 50 Fibonacci Numbers

u1 1 u26 121393
u2 1 u27 196418
u3 2 u28 317811
u4 3 u29 514229
u5 5 u30 832040
u6 8 u31 1346269
u7 13 u32 2178309
u8 21 u33 3524578
u9 34 u34 5702887
u10 55 u35 9227465
u11 89 u36 14930352
u12 144 u37 24157817
u13 233 u38 39088169
u14 377 u39 63245986
u15 610 u40 102334155
u16 987 u41 165580141
u17 1597 u42 267914296
u18 2584 u43 433494437
u19 4181 u44 701408733
u20 6765 u45 1134903170
u21 10946 u46 1836311903
u22 17711 u47 2971215073
u23 28657 u48 4807526976
u24 46368 u49 7778742049
u25 75025 u50 12586269025



P1: BINAYA KUMAR DASH

bur83147_ch14_283_302 Burton DQ032A-Elementary-v2.cls November 21, 2009 0:50

FIBONACCI NUMBERS 295

There are only three Fibonacci numbers that are squares (u1 = u2 = 1, u12 = 122)
and only three that are cubes (u1 = u2 = 1, u6 = 23). Five of them are triangular
numbers, namely, u1 = u2 = 1, u4 = 3, u8 = 21, and u10 = 55. Also, no Fibonacci
number is perfect.

The next result to be proved is that every positive integer can be written as a
sum of distinct Fibonacci numbers. For instance, looking at the first few positive
integers:

1 = u1 5 = u5 = u4 + u3

2 = u3 6 = u5 + u1 = u4 + u3 + u1

3 = u4 7 = u5 + u3 = u4 + u3 + u2 + u1

4 = u4 + u1 8 = u6 = u5 + u4

It will be enough to show by induction on n > 2 that each of the integers 1, 2, 3, . . . ,

un − 1 is a sum of numbers from the set {u1, u2, . . . , un−2}, none repeated. Assuming
that this holds for n = k, choose N with uk − 1 < N < uk+1. Because N − uk−1 <

uk+1 − uk−1 = uk , we infer that the integer N − uk−1 is representable as a sum of
distinct numbers from {u1, u2, . . . , uk−2}. Then N and, in consequence, each of the
integers 1, 2, 3, . . . , uk+1 − 1 can be expressed as a sum (without repetitions) of
numbers from the set {u1, u2, . . . , uk−2, uk−1}. This completes the induction step.

Because two consecutive members of the Fibonacci sequence may be combined
to give the next member, it is superfluous to have consecutive Fibonacci numbers
in our representation of an integer. Thus, uk + uk−1 is replaced by uk+1 whenever
possible. If the possibility of using u1 is ignored (because u2 also has the value 1),
then the smallest Fibonacci number appearing in the representation is either u2 or
u3. We arrive at what is known as the Zeckendorf representation.

Theorem 14.4. Any positive integer N can be expressed as a sum of distinct Fibonacci
numbers, no two of which are consecutive; that is,

N = uk1 + uk2 + · · · + ukr

where k1 ≥ 2 and k j+1 ≥ k j + 2 for j = 1, 2, . . . , r − 1.

When representing the integer N , where ur < N < ur+1, as a sum of nonconsec-
utive Fibonacci numbers, the number ur must appear explicitly. If the representation
did not contain ur , then even if all the admissible Fibonacci numbers were used their
sum would not add up to N . For when r is even, say r = 2s, we have the easily
established identity

u3 + u5 + u7 + · · · + u2s−1 = u2s − 1 = ur − 1

whereas if r is odd, say r = 2s + 1, then

u2 + u4 + u6 + · · · + u2s = u2s−1 − 1 = ur − 1

In either case, the resulting sum is less than N . Any other Zeckendorf represen-
tation would not have a sum large enough to reach ur − 1.
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To take a simple example, pick N = 50. Here, u9 < 50 < u10 and the
Zeckendorf representation is

50 = u4 + u7 + u9

In 1843, the French mathematician Jacques-Philippe-Marie Binet (1786–1856)
discovered a formula for expressing un in terms of the integer n; namely,

un = 1√
5

[(
1 + √

5

2

)n

−
(

1 − √
5

2

)n]

This formula can be obtained by considering the two roots

α = 1 + √
5

2
and β = 1 − √

5

2

of the quadratic equation x2 − x − 1 = 0. As roots of this equation, they must satisfy

α2 = α + 1 and β2 = β + 1

When the first of these relations is multiplied by αn , and the second by βn , the result
is

αn+2 = αn+1 + αn and βn+2 = βn+1 + βn

Subtracting the second equation from the first, and dividing by α − β, leads to

αn+2 − βn+2

α − β
= αn+1 − βn+1

α − β
+ αn − βn

α − β

If we put Hn = (αn − βn)/(α − β), the previous equation can be restated more
concisely as

Hn+2 = Hn+1 + Hn n ≥ 1

Now notice a few things about α and β:

α + β = 1 α − β =
√

5 αβ = −1

Hence,

H1 = α − β

α − β
= 1 H2 = α2 − β2

α − β
= α + β = 1

What all this means is that the sequence H1, H2, H3, · · · is precisely the Fibonacci
sequence, which gives

un = αn − βn

α − β
n ≥ 1

With the help of this rather awkward-looking expression for un known as the
Binet formula, it is possible to derive conveniently many results connected with the
Fibonacci numbers. Let us, for example, show that

u2
n+2 − u2

n = u2n+2
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As we start, recall that αβ = −1 which has the immediate consequence that
(αβ)2k = 1 for k ≥ 1. Then

u2
n+2 − u2

n =
(

αn+2 − βn+2

α − β

)2

−
(

αn − βn

α − β

)2

= α2(n+2) − 2 + β2(n+2)

(α − β)2
− α2n − 2 + β2n

(α − β)2

= α2(n+2) + β2(n+2) − α2n − β2n

(α − β)2

Now the expression in the numerator may be rewritten as

α2(n+2) − (αβ)2α2n − (αβ)2β2n + β2(n+2) = (α2 − β2)(α2n+2 − β2n+2)

On doing so, we get

u2
n+2 − u2

n = (α2 − β2)(α2n+2 − β2n+2)

(α − β)2

= (α + β)

(
α2n+2 − β2n+2

α − β

)

= 1 · u2n+2 = u2n+2

For a second illustration of the usefulness of the Binet formula, let us once again
derive the relation u2n+1u2n−1 − 1 = u2

2n . First, we calculate

u2n+1u2n−1 − 1 =
(

α2n+1 − β2n+1

√
5

) (
α2n−1 − β2n−1

√
5

)
− 1

= 1

5
(α4n + β4n − (αβ)2n−1α2 − (αβ)2n−1β2 − 5)

= 1

5
(α4n + β4n + (α2 + β2) − 5)

Because α2 + β2 = 3, this last expression becomes

1

5
(α4n + β4n − 2) = 1

5
(α4n + β4n − 2(αβ)2n)

=
(

α2n − β2n

√
5

)2

= u2
2n

leading to the required identity.
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The Binet formula can also be used to obtain the value of Fibonacci numbers.
The inequality 0 < |β| < 1 implies that |βn| = |β|n < 1 for n ≥ 1. Hence∣∣∣∣un − αn

√
5

∣∣∣∣ =
∣∣∣∣α

n − βn

√
5

− αn

√
5

∣∣∣∣
= |βn|√

5
<

1√
5

<
1

2

which indicates that un is the nearest integer to αn√
5
. For instance, α14√

5
≈ 377.0005

tells us that the Fibonacci number u14 = 377. Similarly, u15 = 610 because α15√
5

≈
609.9996. Our result can be viewed as asserting that un is the largest integer not
exceeding αn√

5
+ 1

2 , or expressed in terms of the greatest integer function,

un =
[

αn

√
5

+ 1

2

]
n ≥ 1

We conclude this section with two theorems concerning prime factors of
Fibonacci numbers. The first shows that every prime divides some Fibonacci number.
Because 2 | u3, 3 | u4, and 5 | u5, it suffices to consider those primes p > 5.

Theorem 14.5. For a prime p > 5, either p | u p−1 or p | u p+1, but not both.

Proof. By Binet’s formula, u p = (α p − β p)/
√

5. When the pth powers of α and β

are expanded by the binomial theorem, we obtain

u p = 1

2p
√

5

[
1 +

(
p
1

) √
5 +

(
p
2

)
5 +

(
p
3

)
5
√

5 + · · · +
(

p
p

)
5(p−1)/2

√
5

]

− 1

2p
√

5

[
1 −

(
p
1

) √
5 +

(
p
2

)
5 −

(
p
3

)
5
√

5 + · · · −
(

p
p

)
5(p−1)/2

√
5

]

= 1

2p−1

[(
p
1

)
+

(
p
3

)
5 +

(
p
5

)
52 + · · · +

(
p
p

)
5(p−1)/2

]

Recall that
(p

k

) ≡ 0 (mod p) for 1 ≤ k ≤ p − 1, and also 2p−1 ≡ 1 (mod p). These
facts allow us to write the expression for u p more simply as

u p ≡ 2p−1u p ≡
(

p
p

)
5(p−1)/2 = 5(p−1)/2 (mod p)

Theorem 9.2 then yields u p ≡ (5/p) ≡ ±1 (mod p), so that u2
p ≡ 1 (mod p). The

final touch is to treat the familiar identity u2
p = u p−1u p+1 + (−1)p−1 as a congruence

modulo p, thereby reducing it to u p−1u p+1 ≡ 0 (mod p). This, however, is just the
statement that one of u p−1 and u p+1 is divisible by p. Because gcd(p − 1, p + 1) = 2,
Theorem 14.3 tells us that

gcd(u p−1, u p+1) = u2 = 1

and the pieces of the theorem are established.

We should point out that p − 1 or p + 1 is not necessarily the smallest subscript
of a Fibonacci number divisible by p. For instance, 13 | u14, but also 13 | u7.
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Having considered a divisibility feature of u p−1 or u p+1, we next turn to u p,
where p is a prime. Of course, u p could itself be prime as with u5 = 5 and u7 = 13.
There are several results dealing with the composite nature of certain u p. We conclude
the section with one of these.

Theorem 14.6. Let p ≥ 7 be a prime for which p ≡ 2 (mod 5), or p ≡ 4 (mod 5). If
2p − 1 is also prime, then 2p − 1|u p.

Proof. Suppose that p has the form 5k + 2 for some k. The starting point is to square
the formula u p = (α p − β p)/

√
5, then expand α2p and β2p by the binomial theorem

to get

5u2
p = 1

22p−1

[
1 +

(
2p

2

)
5 +

(
2p

4

)
52 + · · · +

(
2p

2p

)
5p

]
+ 2

Observe that
( 2p

k

) ≡ 0 (mod 2p − 1) for 2 ≤ k < 2p − 1 while, because 2p − 1 is
prime, 22p−1 ≡ 2 (mod 2p − 1). This enables us to reduce the expression for u2

p to

2(5u p)2 ≡ (1 + 5p) + 4 (mod 2p − 1)

or simply, to 2u2
p ≡ 1 + 5p−1(mod 2p − 1). Now

5p−1 = 5(2p−2)/2 ≡ (5/2p − 1) (mod 2p − 1)

From Theorems 9.9 and 9.10, it is easy to see that

(5/2p − 1) = (2p − 1/5) = (10k + 3/5) = (3/5) = −1

Last, we arrive at 2u2
p ≡ 1 + (−1) ≡ 0 (mod 2p − 1), from which it may be concluded

that 2p − 1 divides u p. The case p ≡ 4 (mod 5) can be handled in much the same way
upon noting that (2/5) = −1.

As illustrations, we mention u19 = 37 · 113, where 19 ≡ 4 (mod 5); and u37 =
73 · 330929, where 37 ≡ 2 (mod 5).

The Fibonacci numbers provide a continuing source of questions for investiga-
tion. Here is a recent result: the largest Fibonacci number that is the sum of two fac-
torials is u12 = 144 = 4! + 5!. Another is that the only squares among the Fibonacci
numbers are u1 = 1 and u12 = 122, with the only other power being u6 = 23.

PROBLEMS 14.3

1. Using induction on the positive integer n, establish the following formulas:
(a) u1 + 2u2 + 3u3 + · · · + nun = (n + 1)un+2 − un+4 + 2.
(b) u2 + 2u4 + 3u6 + · · · + nu2n = nu2n+1 − u2n .

2. (a) Show that the sum of the first n Fibonacci numbers with odd indices is given by the
formula

u1 + u3 + u5 + · · · + u2n−1 = u2n

[Hint: Add the equalities u1 = u2, u3 = u4 − u2, u5 = u6 − u4, . . . .]
(b) Show that the sum of the first n Fibonacci numbers with even indices is given by the

formula
u2 + u4 + u6 + · · · + u2n = u2n+1 − 1

[Hint: Apply part (a) in conjunction with identity in Eq. (2).]
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(c) Derive the following expression for the alternating sum of the first n ≥ 2 Fibonacci
numbers:

u1 − u2 + u3 − u4 + · · · + (−1)n+1un = 1 + (−1)n+1un−1

3. From Eq. (1), deduce that

u2n−1 = u2
n + u2

n−1 u2n = u2
n+1 − u2

n−1 n ≥ 2

4. Use the results of Problem 3 to obtain the following identities:
(a) u2

n+1 + u2
n−2 = 2u2n−1, n ≥ 3.

(b) u2
n+2 + u2

n−1 = 2(u2
n + u2

n+1), n ≥ 2.
5. Establish that the formula

unun−1 = u2
n − u2

n−1 + (−1)n

holds for n ≥ 2 and use this to conclude that consecutive Fibonacci numbers are
relatively prime.

6. Without resorting to induction, derive the following identities:
(a) u2

n+1 − 4unun−1 = u2
n−2, n ≥ 3.

[Hint: Start by squaring both un−2 = un − un−1 and un+1 = un + un−1.]
(b) un+1un−1 − un+2un−2 = 2(−1)n, n ≥ 3.

[Hint: Put un+2 = un+1 + un, un−2 = un − un−1 and use Eq. (3).]
(c) u2

n − un+2un−2 = (−1)n, n ≥ 3.
[Hint: Mimic the proof of Eq. (3).]

(d) u2
n − un+3un−3 = 4(−1)n+1, n ≥ 4.

(e) unun+1un+3un+4 = u4
n+2 − 1, n ≥ 1.

[Hint: By part (c), un+4un = u2
n+2 + (−1)n+1, whereas by Eq. (3), un+1un+3 =

u2
n+2 + (−1)n+2.]

7. Represent the integers 50, 75, 100, and 125 as sums of distinct Fibonacci numbers.
8. Prove that every positive integer can be written as a sum of distinct terms from the

sequence u2, u3, u4, . . . (that is, the Fibonacci sequence with u1 deleted).
9. Establish the identity

(unun+3)2 + (2un+1un+2)2 = (u2n+3)2 n ≥ 1

and use this to generate five primitive Pythagorean triples.
10. Prove that the product unun+1un+2un+3 of any four consecutive Fibonacci numbers is

equal to the area of a Pythagorean triangle.
[Hint: See the previous problem.]

11. From the Binet formula for Fibonacci numbers, derive the relation

u2n+2u2n−1 − u2nu2n+1 = 1 n ≥ 1

12. For n ≥ 1, show that the product u2n−1u2n+5 can be expressed as the sum of two squares.
[Hint: Problem 6(d).]

13. (a) Prove that if p = 4k + 3 is prime, then p cannot divide a Fibonacci number with an
odd index; that is, p � | u2n−1 for all n ≥ 1.
[Hint: In the contrary case, u2

n + u2
n−1 = u2n−1 ≡ 0 (mod p). See Problem 12,

Section 5.3.]
(b) From part (a) conclude that there are infinitely many primes of the form 4k + 1.

[Hint: Consider the sequence {u p}, where p > 5 is prime.]
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14. Verify that the product u2nu2n+2u2n+4 of three consecutive Fibonacci numbers with even
indices is the product of three consecutive integers; for instance, we have u4u6u8 =
504 = 7 · 8 · 9.
[Hint: First show that u2nu2n+4 = u2

2n+2 − 1.]
15. Use Eqs. (1) and (2) to show that the sum of any 20 consecutive Fibonacci numbers is

divisible by u10.
16. For n ≥ 4, prove that un + 1 is not a prime.

[Hint: It suffices to establish the identities

u4k + 1 = u2k−1(u2k + u2k+2)

u4k+1 + 1 = u2k+1(u2k−1 + u2k+1)

u4k+2 + 1 = u2k+2(u2k+1 + u2k−1)

u4k+3 + 1 = u2k+1(u2k+1 + u2k+3).]

17. The Lucas numbers are defined by the same recurrence formula as the Fibonacci numbers,

Ln = Ln−1 + Ln−2 n ≥ 3

but with L1 = 1 and L2 = 3; this gives the sequence 1, 3, 4, 7, 11, 18, 29, 47, 76, 123,
199, 322, . . . . For the Lucas numbers, derive each of the identities below:
(a) L1 + L2 + L3 + · · · + Ln = Ln+2 − 3, n ≥ 1.
(b) L1 + L3 + L5 + · · · + L2n−1 = L2n − 2, n ≥ 1.
(c) L2 + L4 + L6 + · · · + L2n = L2n+1 − 1, n ≥ 1.
(d) L2

n = Ln+1 Ln−1 + 5(−1)n , n ≥ 2.
(e) L2

1 + L2
2 + L2

3 + · · · + L2
n = Ln Ln+1 − 2, n ≥ 1.

(f) L2
n+1 − L2

n = Ln−1 Ln+2, n ≥ 2.
18. Establish the following relations between the Fibonacci and Lucas numbers:

(a) Ln = un+1 + un−1 = un + 2un−1, n ≥ 2.
[Hint: Argue by induction on n.]

(b) Ln = un+2 − un−2, n ≥ 3.
(c) u2n = un Ln , n ≥ 1.
(d) Ln+1 + Ln−1 = 5un , n ≥ 2.
(e) L2

n = u2
n + 4un+1un−1, n ≥ 2.

(f) 2um+n = um Ln + Lmun , m ≥ 1, n ≥ 1.
(g) gcd(un, Ln) = 1 or 2, n ≥ 1.

19. If α = (1 + √
5)/2 and β = (1 − √

5)/2, obtain the Binet formula for the Lucas numbers

Ln = αn + βn n ≥ 1

20. For the Lucas sequence, establish the following results without resorting to induction:
(a) L2

n = L2n + 2(−1)n , n ≥ 1.
(b) Ln Ln+1 − L2n+1 = (−1)n , n ≥ 1.
(c) L2

n − Ln−1 Ln+1 = 5(−1)n , n ≥ 2.
(d) L2n + 7(−1)n = Ln−2 Ln+2, n ≥ 3.

21. Use the Binet formulas to obtain the relations below:
(a) L2

n − 5u2
n = 4(−1)n , n ≥ 1.

(b) L2n+1 = 5unun+1 + (−1)n , n ≥ 1.
(c) L2

n − u2
n = 4un−1un+1, n ≥ 2.

(d) Lm Ln + 5umun = 2Lm+n , m ≥ 1, n ≥ 1.
22. Show that the Lucas numbers L4, L8, L16, L32, . . . all have 7 as the final digit; that is,

L2n ≡ 7 (mod 10) for n ≥ 2.
[Hint: Induct on the integer n and appeal to the formula L2

n = L2n + 2(−1)n .]
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23. In 1876, Lucas discovered the following formula for the Fibonacci numbers in terms of
the binomial coefficients:

un =
(

n − 1
0

)
+

(
n − 2

1

)
+

(
n − 3

2

)
+ · · · +

(
n − j
j − 1

)
+

(
n − j − 1

j

)

where j is the largest integer less than or equal to (n − 1)/2. Derive this result.
[Hint: Argue by induction, using the relation un = un−1 + un−2; note also that(

m
k

)
=

(
m − 1

k

)
+

(
m − 1
k − 1

)
.]

24. Establish that for n ≥ 1,

(a)

(
n
1

)
u1 +

(
n
2

)
u2 +

(
n
3

)
u3 + · · · +

(
n
n

)
un = u2n ,

(b) −
(

n
1

)
u1 +

(
n
2

)
u2 −

(
n
3

)
u3 + · · · + (−1)n

(
n
n

)
un = −un .

[Hint: Use the Binet formula for un , and then the binomial theorem.]
25. Prove that 24 divides the sum of any 24 consecutive Fibonacci numbers.

[Hint: Consider the identity

un + un+1 + · · · + un+k−1 = un−1(uk+1 − 1) + un(uk+2 − 1).]

26. Let n ≥ 2 and m = n13 − n. Show that um is divisible by 30290.
[Hint: See Problem 1(b) of Section 7.3.]

27. For n ≥ 1, prove that the sequence of ratios un+1/un approaches α as a limiting value;
that is,

lim
n→∞

un+1

un
= α = 1 + √

5

2

[Hint: Employ the relation uk = αk√
5

+ δk , where |δk | < 1
2 for all k ≥ 1.]

28. Prove the following two assertions:
(a) If p is a prime of the form 5k ± 2, then p|u p+1.

[Hint: Mimic the argument in Theorem 14.5, with u p+1 replacing u p.]
(b) If p is a prime of the form 5k ± 1, then p|u p−1.
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CHAPTER

15
CONTINUED FRACTIONS

A mathematician, like a painter or a poet, is a maker of patterns. If his patterns
are more permanent than theirs, it is because they are made with ideas.

G. H. HARDY

15.1 SRINIVASA RAMANUJAN

From time to time India has produced mathematicians of remarkable power, but
Srinivasa Ramanujan (1887–1920) is universally considered to have been its greatest
genius. He was born in the southern Indian town of Erode, near Madras, the son of
a bookkeeper in a cloth merchant’s shop. He began his single-minded pursuit of
mathematics when, at the age of 15 or 16, he borrowed a copy of Carr’s Synopsis
of Pure Mathematics. This unusual book contained the statements of over 6000
theorems, very few with proofs. Ramanujan undertook the task of establishing,
without help, all the formulas in the book. In 1903, he won a scholarship to the
University of Madras, only to lose it a year later for neglecting other subjects in
favor of mathematics. He dropped out of college in disappointment and wandered the
countryside for the next several years, impoverished and unemployed. Compelled
to seek a regular livelihood after marrying, Ramanujan secured (1912) a clerical
position with the Madras Port Trust Office, a job that left him enough time to continue
his work in mathematics. After publishing his first paper in 1911, and two more the
next year, he gradually gained recognition.

At the urging of influential friends, Ramanujan began a correspondence with the
leading British pure mathematician of the day, G. H. Hardy. Appended to his letters
to Hardy were lists of theorems, 120 in all, some definitely proved and others only

303
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Srinivasa Ramanujan
(1887–1920)

(Trinity College Library, Cambridge)

conjectured. Examining these with bewilderment, Hardy concluded that “they could
only be written down by a mathematician of the highest class; they must be true
because if they were not true, no one would have the imagination to invent them.”
Hardy immediately invited Ramanujan to come to Cambridge University to develop
his already great, but untrained, mathematical talent. Up to that time, Ramanujan
had worked almost totally isolated from modern European mathematics.

Supported by a special scholarship, Ramanujan arrived in Cambridge in April
1914. There he had 3 years of uninterrupted activity, doing much of his best work
in collaboration with Hardy. Hardy wrote to Madras University saying, “He will
return to India with a scientific standing and reputation such as no Indian has en-
joyed before.” However, in 1917, Ramanujan became incurably ill. His disease was
diagnosed at that time as tuberculosis, but it is now thought to have been a severe
vitamin deficiency. (A strict vegetarian who cooked all of his own food, Ramanujan
had difficulty maintaining an adequate diet in war-rationed England.) Early in 1919
when the seas were finally considered safe for travel, he returned to India. In ex-
treme pain, Ramanujan continued to do mathematics while lying in bed. He died the
following April, at the age of 32.

The theory of partitions is one of the outstanding examples of the success of the
Hardy-Ramanujan collaboration. A partition of a positive integer n is a way of writing
n as a sum of positive integers, the order of the summands being irrelevant. The
integer 5, for example, may be partitioned in seven ways: 5, 4 + 1, 3 + 2, 3 + 1 + 1,

2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1. If p(n) denotes the total number of
partitions of n, then the values of p(n) for the first six positive integers are p(1) = 1,
p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7 and p(6) = 11. Actual computation shows
that the partition function p(n) increases very rapidly with n; for instance, p(200)
has the enormous value

p(200) = 3972999029388
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Although no simple formula for p(n) exists, one can look for an approximate
formula giving its general order of magnitude. In 1918, Hardy and Ramanujan proved
what is considered one of the masterpieces in number theory: namely, that for large
n the partition function satisfies the relation

p(n) ≈ ec
√

n

4n
√

3

where the constant c = π (2/3)1/2. For n = 200, the right-hand side of the previous
relation is approximately 4 · 1012, which is remarkably close to the actual value of
p(200).

Hardy and Ramanujan proved considerably more. They obtained a fairly com-
plicated infinite series for p(n) that could be used to calculate p(n) exactly, for any
positive integer n. When n = 200, the initial term of this series produces the ap-
proximation 3972998993185.896, agreeing with the first six significant figures of
p(200); truncated at five terms, the series approximates the exact value with an error
of 0.004.

Ramanujan was the first to discover (in 1919) several remarkable congruence
properties involving the partition function p(n); namely, he proved that

p(5k + 4) ≡ 0 (mod 5) p(7k + 5) ≡ 0 (mod 7) p(11k + 6) ≡ 0 (mod 11)

as well as similar divisibility relations for the moduli 52, 72, and 112, such as
p(25k + 24) ≡ 0 (mod 52). These results were embodied in his famous conjec-
ture: For q = 5, 7, or 11, if 24n ≡ 1 (mod qk), then p(n) ≡ 0 (mod qk) for all k ≥ 0.
From extensive tables of values of p(n), it was later noticed that the conjectured
congruence relating to powers of 7 is false when k = 3; that is, when n = 243, we
have 24n = 5832 ≡ 1 (mod 73), but

p(243) = 133978259344888 ≡ 245 �≡ 0 (mod 73)

Yet Ramanujan’s inspired guesses were illuminating even when incorrect, for it is
now known that if 24n ≡ 1 (mod 72k−2), then p(n) ≡ 0 (mod 7k) for k ≥ 2. It was
proved by Ken Ono in 1999 that partition congruences can be found not only for 5,
7, and 11, but also for all larger primes.

In 1915, Ramanujan published an elaborate 63-page memoir on highly compos-
ite numbers. An integer n > 1 is termed highly composite if it has more divisors than
any preceding integer; in other words, the divisor function τ satisfies τ (m) < τ (n) for
all m < n. The first 10 highly composite numbers are 2, 4, 6, 12, 24, 36, 48, 60, 120,
and 180. Ramanujan obtained some surprisingly accurate information concerning
their structure. It was known that highly composite numbers could be expressed as

n = 2k1 3k2 5k3 · · · pkr
r where k1 ≥ k2 ≥ k3 ≥ · · · ≥ kr

What Ramanujan showed was that the beginning exponents form a strictly decreasing
sequence k1 > k2 > k3 > · · ·, but that later groups of equal exponents occur; and
that the final exponent kr = 1, except when n = 4 or n = 36, in which case kr = 2.
As an example,

6746328388800 = 26 · 34 · 52 · 72 · 11 · 13 · 17 · 19 · 23
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As a final example of Ramanujan’s creativity, we mention his unparalleled abil-
ity to come up with infinite series representations for π . Computer scientists have
exploited his series

1

π
=

√
8

9801

∞∑
n=0

(4n)!

(n!)4

[1103 + 26390n]

3964n

to calculate the value of π to millions of decimal digits; each successive term in the
series adds roughly eight more correct digits. Ramanujan discovered 14 other series
for 1/π , but he gave almost no explanation as to their origin. The most remarkable
of these is

1

π
=

∞∑
n=0

(
2n
n

)3 42n + 5

212n+4

This series has the property that it can be used to compute the second block of k
(binary) digits in the decimal expansion of π without calculating the first k digits.

15.2 FINITE CONTINUED FRACTIONS

In that part of the Liber Abaci dealing with the resolution of fractions into unit
fractions, Fibonacci introduced a kind of “continued fraction.” For example, he
employed the symbol 1 1 1

3 4 5 as an abbreviation for

1 + 1 + 1
5

4
3

= 1

3
+ 1

3 · 4
+ 1

3 · 4 · 5
The modern practice is, however, to write continued fractions in a descending fashion,
as with

2 + 1

4 + 1

1 + 1

3 + 1
2

A multiple-decked expression of this type is said to be a finite simple continued
fraction. To put the matter formally, we give Definition 15.1.

Definition 15.1. By a finite continued fraction is meant a fraction of the form

a0 + 1

a1 + 1

a2 + 1

a3 + 1

. . .
1

an−1 + 1

an
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where a0, a1, . . . , an are real numbers, all of which except possibly a0 are positive. The
numbers a1, a2, . . . , an are the partial denominators of this fraction. Such a fraction is
called simple if all of the ai are integers.

Although giving due credit to Fibonacci, most authorities agree that the theory
of continued fractions begins with Rafael Bombelli, the last of the great algebraists
of Renaissance Italy. In his L’Algebra Opera (1572), Bombelli attempted to find
square roots by means of infinite continued fractions—a method both ingenious and
novel. He essentially proved that

√
13 could be expressed as the continued fraction

√
13 = 3 + 4

6 + 4

6 + 4

6 +
. . .

It may be interesting to mention that Bombelli was the first to popularize the work of
Diophantus in the Latin West. He set out initially to translate the Vatican Library’s
copy of Diophantus’s Arithmetica (probably the same manuscript uncovered by
Regiomontanus), but, carried away by other labors, never finished the project. In-
stead, he took all the problems of the first four Books and embodied them in his
Algebra, interspersing them with his own problems. Although Bombelli did not dis-
tinguish between the problems, he nonetheless acknowledged that he had borrowed
freely from the Arithmetica.

Evidently, the value of any finite simple continued fraction will always be a
rational number. For instance, the continued fraction

3 + 1

4 + 1

1 + 1

4 + 1
2

can be condensed to the value 170/53:

3 + 1

4 + 1

1 + 1

4 + 1
2

= 3 + 1

4 + 1

1 + 2
9

= 3 + 1

4 + 9
11

= 3 + 11

53

= 170

53
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Theorem 15.1. Any rational number can be written as a finite simple continued
fraction.

Proof. Let a/b, where b > 0, be an arbitrary rational number. Euclid’s algorithm for
finding the greatest common divisor of a and b gives us the equations

a = ba0 + r1 0 < r1 < b
b = r1a1 + r2 0 < r2 < r1

r1 = r2a2 + r3 0 < r3 < r2

...
rn−2 = rn−1an−1 + rn 0 < rn < rn−1

rn−1 = rnan + 0

Notice that because each remainder rk is a positive integer, a1, a2, . . . , an are all posi-
tive. Rewrite the equations of the algorithm in the following manner:

a

b
= a0 + r1

b
= a0 + 1

b

r1

b

r1
= a1 + r2

r1
= a1 + 1

r1

r2

r1

r2
= a2 + r3

r2
= a2 + 1

r2

r3

...

rn−1

rn
= an

If we use the second of these equations to eliminate b/r1 from the first equation,
then

a

b
= a0 + 1

b

r1

= a0 + 1

a1 + 1
r1

r2

In this result, substitute the value of r1/r2 as given in the third equation:

a

b
= a0 + 1

a1 + 1

a2 + 1
r2

r3
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Continuing in this way, we can go on to get

a

b
= a0 + 1

a1 + 1

a2 + 1

a3 +
. . .

1

an−1 + 1

an

thereby finishing the proof.

To illustrate the procedure involved in the proof of Theorem 15.1, let us represent
19/51 as a continued fraction. An application of Euclid’s algorithm to the integers
19 and 51 gives the equations

51 = 2 · 19 + 13 or 51/19 = 2 + 13/19

19 = 1 · 13 + 6 or 19/13 = 1 + 6/13

13 = 2 · 6 + 1 or 13/6 = 2 + 1/6

6 = 6 · 1 + 0 or 6/6 = 1

Making the appropriate substitutions, it is seen that

19

51
= 1

51
19

= 1

2 + 13
19

= 1

2 + 1
19
13

= 1

2 + 1

1 + 6
13

= 1

2 + 1

1 + 1
13
6

= 1

2 + 1

1 + 1

2 + 1
6

which is the continued fraction expansion for 19/51.
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Because continued fractions are unwieldy to print or write, we adopt the conven-
tion of denoting a continued fraction by a symbol that displays its partial quotients,
say, by the symbol [a0; a1, . . . , an]. In this notation, the expansion for 19/51 is indi-
cated by

[0; 2, 1, 2, 6]

and for 172/51 = 3 + 19/51 by

[3; 2, 1, 2, 6]

The initial integer in the symbol [a0; a1, . . . , an] will be zero when the value of the
fraction is positive but less than one.

The representation of a rational number as a finite simple continued fraction is
not unique; once the representation has been obtained, we can always modify the
last term. For, if an > 1, then

an = (an − 1) + 1 = (an − 1) + 1

1
where an − 1 is a positive integer; hence,

[a0; a1, . . . , an] = [a0; a1, . . . , an − 1, 1]

On the other hand, if an = 1, then

an−1 + 1

an
= an−1 + 1

1
= an−1 + 1

so that

[a0; a1, . . . , an−1, an] = [a0; a1, . . . , an−2, an−1 + 1]

Every rational number has two representations as a simple continued fraction, one
with an even number of partial denominators and one with an odd number (it turns
out that these are the only two representations). In the case of 19/51,

19/51 = [0; 2, 1, 2, 6] = [0; 2, 1, 2, 5, 1]

Example 15.1. We go back to the Fibonacci sequence and consider the quotient of
two successive Fibonacci numbers (that is, the rational number un+1/un) written as
a simple continued fraction. As pointed out earlier, the Euclidean Algorithm for the
greatest common divisor of un and un+1 produces the n − 1 equations

un+1 = 1 · un + un−1

un = 1 · un−1 + un−2

...
u4 = 1 · u3 + u2

u3 = 2 · u2 + 0

Because the quotients generated by the algorithm become the partial denominators of
the continued fraction, we may write

un+1

un
= [1; 1, 1, . . . , 1, 2]
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But un+1/un is also represented by a continued fraction having one more partial de-
nominator than does [1; 1, 1, . . . , 1, 2]; namely,

un+1

un
= [1; 1, 1, . . . , 1, 1, 1]

where the integer 1 appears n times. Thus, the fraction un+1/un has a continued fraction
expansion that is very easy to describe: There are n − 1 partial denominators all equal
to 1.

As a final item on this part of our program, we would like to indicate how the
theory of continued fractions can be applied to the solution of linear Diophantine
equations. This requires knowing a few pertinent facts about the “convergents” of a
continued fraction, so let us begin proving them here.

Definition 15.2. The continued fraction made from [a0; a1, . . . , an] by cutting off the
expansion after the kth partial denominator ak is called the kth convergent of the given
continued fraction and denoted by Ck ; in symbols,

Ck = [a0; a1, . . . , ak] 1 ≤ k ≤ n

We let the zeroth convergent C0 be equal to the number a0.

A point worth calling attention to is that for k < n if ak is replaced by the value
ak + 1/ak+1, then the convergent Ck becomes the convergent Ck+1;[

a0; a1, . . . , ak−1, ak + 1

ak+1

]

= [a0; a1, . . . , ak−1, ak, ak+1] = Ck+1

It hardly needs remarking that the last convergent Cn always equals the rational
number represented by the original continued fraction.

Going back to our example 19/51 = [0; 2, 1, 2, 6], the successive convergents
are

C0 = 0

C1 = [0; 2] = 0 + 1

2
= 1

2

C2 = [0; 2, 1] = 0 + 1

2 + 1
1

= 1

3

C3 = [0; 2, 1, 2] = 0 + 1

2 + 1

1 + 1
2

= 3

8

C4 = [0; 2, 1, 2, 6] = 19/51

Except for the last convergent C4, these are alternately less than or greater than
19/51, each convergent being closer in value to 19/51 than the previous one.

Much of the labor in calculating the convergents of a finite continued fraction
[a0; a1, . . . , an] can be avoided by establishing formulas for their numerators and
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denominators. To this end, let us define numbers pk and qk (k = 0, 1, . . . , n) as
follows:

p0 = a0 q0 = 1

p1 = a1a0 + 1 q1 = a1

pk = ak pk−1 + pk−2 qk = akqk−1 + qk−2

for k = 2, 3, . . . , n.
A direct computation shows that the first few convergents of [a0; a1, . . . , an]

are

C0 = a0 = a0

1
= p0

q0

C1 = a0 + 1

a1
= a1a0 + 1

a1
= p1

q1

C2 = a0 + 1

a1 + 1

a2

= a2(a1a0 + 1) + a0

a2a1 + 1
= p2

q2

Success hinges on being able to show that this relationship continues to hold. This
is the content of Theorem 15.2.

Theorem 15.2. The kth convergent of the simple continued fraction [a0; a1, . . . , an]
has the value

Ck = pk

qk
0 ≤ k ≤ n

Proof. The previous remarks indicate that the theorem is true for k = 0, 1, 2. Let us
assume that it is true for k = m, where 2 ≤ m < n; that is, for this m,

Cm = pm

qm
= am pm−1 + pm−2

amqm−1 + qm−2
(1)

Note that the integers pm−1, qm−1, pm−2, qm−2 depend on the first m − 1 partial de-
nominators a1, a2, . . . , am−1 and, hence, are independent of am . Thus, Eq. (1) remains
valid if am is replaced by the value am + 1/am+1:

[
a0; a1, . . . , am−1, am + 1

am+1

]

=

(
am + 1

am+1

)
pm−1 + pm−2(

am + 1

am+1

)
qm−1 + qm−2
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As has been explained earlier, the effect of this substitution is to change Cm into the
convergent Cm+1, so that

Cm+1 =

(
am + 1

am+1

)
pm−1 + pm−2(

am + 1

am+1

)
qm−1 + qm−2

= am+1(am pm−1 + pm−2) + pm−1

am+1(amqm−1 + qm−2) + qm−1

= am+1 pm + pm−1

am+1qm + qm−1

However, this is precisely the form that the theorem should take in the case in which
k = m + 1. Therefore, by induction, the stated result holds.

Let us see how this works in a specific instance, say, 19/51 = [0; 2, 1, 2, 6]:

p0 = 0 and q0 = 1

p1 = 0 · 2 + 1 = 1 q1 = 2

p2 = 1 · 1 + 0 = 1 q2 = 1 · 2 + 1 = 3

p3 = 2 · 1 + 1 = 3 q3 = 2 · 3 + 2 = 8

p4 = 6 · 3 + 1 = 19 q4 = 6 · 8 + 3 = 51

This says that the convergents of [0; 2, 1, 2, 6] are

C0 = p0

q0
= 0 C1 = p1

q1
= 1

2
C2 = p2

q2
= 1

3

C3 = p3

q3
= 3

8
C4 = p4

q4
= 19

51

as we know that they should be.
The integers pk and qk were defined recursively for 0 ≤ k ≤ n. We might have

chosen to put

p−2 = 0, p−1 = 1 and q−2 = 1, q−1 = 0

One advantage of this agreement is that the relations

pk = ak pk−1 + pk−2 and qk = akqk−1 + qk−2 k = 0, 1, 2, . . . , n

would allow the successive convergents of a continued fraction [ao; a1, . . . , an] to
be calculated readily. There is no longer a need to treat p0/q0 and p1/q1 separately,
because they are obtained directly from the first two values of k. It is often convenient
to arrange the required calculations in tabular form. To illustrate with the continued
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fraction [2; 3, 1, 4, 2], the work would be set forth in the table

k −2 −1 0 1 2 3 4

ak 2 3 1 4 2
pk 0 1 2 7 9 43 95
qk 1 0 1 3 4 19 42
Ck 2/1 7/3 9/4 43/19 95/42

Notice that [2; 3, 1, 4, 2] = 95/42.
We continue our development of the properties of convergents by proving

Theorem 15.3.

Theorem 15.3. If Ck = pk/qk is the kth convergent of the finite simple continued
fraction [a0; a1, . . . , an], then

pkqk−1 − qk pk−1 = (−1)k−1 1 ≤ k ≤ n

Proof. Induction on k works quite simply, with the relation

p1q0 − q1 p0 = (a1a0 + 1) · 1 − a1 · a0 = 1 = (−1)1−1

disposing of the case k = 1. We assume that the formula in question is also true for
k = m, where 1 ≤ m < n. Then

pm+1qm − qm+1 pm = (am+1 pm + pm−1)qm

− (am+1qm + qm−1)pm

= −(pmqm−1 − qm pm−1)

= −(−1)m−1 = (−1)m

and so the formula holds for m + 1, whenever it holds for m. It follows by induction
that it is valid for all k with 1 ≤ k ≤ n.

A notable consequence of this result is that the numerator and denominator of
any convergent are relatively prime, so that the convergents are always given in
lowest terms.

Corollary. For 1 ≤ k ≤ n, pk and qk are relatively prime.

Proof. If d = gcd(pk, qk), then from the theorem, d | (−1)k−1; because d > 0, this
forces us to conclude that d = 1.

Example 15.2. Consider the continued fraction [0; 1, 1, . . . , 1] in which all the partial
denominators are equal to 1. Here, the first few convergents are

C0 = 0/1 C1 = 1/1 C2 = 1/2 C3 = 2/3 C4 = 3/5, . . .

Because the numerator of the kth convergent Ck is

pk = 1 · pk−1 + pk−2 = pk−1 + pk−2

and the denominator is

qk = 1 · qk−1 + qk−2 = qk−1 + qk−2
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it is apparent that

Ck = uk

uk+1
k ≥ 2

where the symbol uk denotes the kth Fibonacci number. In the present context, the
identity pkqk−1 − qk pk−1 = (−1)k−1 of Theorem 15.3 assumes the form

u2
k − uk+1uk−1 = (−1)k−1

This is precisely Eq. (3) on page 292.

Let us now turn to the linear Diophantine equation

ax + by = c

where a, b, c are given integers. Because no solution of this equation exists if d � | c,
where d = gcd(a, b), there is no harm in assuming that d | c. In fact, we need only
concern ourselves with the situation in which the coefficients are relatively prime.
For if gcd(a, b) = d > 1, then the equation may be divided by d to produce

a

d
x + b

d
y = c

d
Both equations have the same solutions and, in the latter case, we know that
gcd(a/d, b/d) = 1.

Observe, too, that a solution of the equation

ax + by = c gcd(a, b) = 1

may be obtained by first solving the Diophantine equation

ax + by = 1 gcd(a, b) = 1

Indeed, if integers x0 and y0 can be found for which ax0 + by0 = 1, then multipli-
cation of both sides by c gives

a(cx0) + b(cy0) = c

Hence, x = cx0 and y = cy0 is the desired solution of ax + by = c.
To secure a pair of integers x and y satisfying the equation ax + by = 1, expand

the rational number a/b as a simple continued fraction; say,
a

b
= [a0; a1, . . . , an]

Now the last two convergents of this continued fraction are

Cn−1 = pn−1

qn−1
and Cn = pn

qn
= a

b

Because gcd(pn, qn) = 1 = gcd(a, b), it may be concluded that

pn = a and qn = b

By virtue of Theorem 15.3, we have

pnqn−1 − qn pn−1 = (−1)n−1

or, with a change of notation,

aqn−1 − bpn−1 = (−1)n−1
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Thus, with x = qn−1 and y = −pn−1, we have

ax + by = (−1)n−1

If n is odd, then the equation ax + by = 1 has the particular solution x0 = qn−1,
y0 = −pn−1; whereas if n is an even integer, then a solution is given by x0 = −qn−1,
y0 = pn−1. Our earlier theory tells us that the general solution is

x = x0 + bt y = y0 − at t = 0, ±1, ±2, . . .

Example 15.3. Let us solve the linear Diophantine equation

172x + 20y = 1000

by means of simple continued fractions. Because gcd(172, 20) = 4, this equation may
be replaced by the equation

43x + 5y = 250

The first step is to find a particular solution to

43x + 5y = 1

To accomplish this, we begin by writing 43/5 (or if one prefers, 5/43) as a simple
continued fraction. The sequence of equalities obtained by applying the Euclidean
Algorithm to the numbers 43 and 5 is

43 = 8 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1

so that

43/5 = [8; 1, 1, 2] = 8 + 1

1 + 1

1 + 1
2

The convergents of this continued fraction are

C0 = 8/1 C1 = 9/1 C2 = 17/2 C3 = 43/5

from which it follows that p2 = 17, q2 = 2, p3 = 43, and q3 = 5. Falling back on
Theorem 15.3 again,

p3q2 − q3 p2 = (−1)3−1

or in equivalent terms,

43 · 2 − 5 · 17 = 1

When this relation is multiplied by 250, we obtain

43 · 500 + 5(−4250) = 250

Thus, a particular solution of the Diophantine equation 43x + 5y = 250 is

x0 = 500 y0 = −4250
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The general solution is given by the equations

x = 500 + 5t y = −4250 − 43t t = 0, ±1, ±2, . . .

Before proving a theorem concerning the behavior of the odd- and even-
numbered convergents of a simple continued fraction, we need a preliminary lemma.

Lemma. If qk is the denominator of the kth convergent Ck of the simple continued
fraction [a0; a1, . . . , an], then qk−1 ≤ qk for 1 ≤ k ≤ n, with strict inequality when
k > 1.

Proof. We establish the lemma by induction. In the first place, q0 = 1 ≤ a1 = q1, so
that the asserted equality holds when k = 1. Assume, then, that it is true for k = m,
where 1 ≤ m < n. Then

qm+1 = am+1qm + qm−1 > am+1qm ≥ 1 · qm = qm

so that the inequality is also true for k = m + 1.

With this information available, it is an easy matter to prove Theorem 15.4.

Theorem 15.4. (a) The convergents with even subscripts form a strictly increasing
sequence; that is,

C0 < C2 < C4 < · · ·
(b) The convergents with odd subscripts form a strictly decreasing sequence; that is,

C1 > C3 > C5 > · · ·
(c) Every convergent with an odd subscript is greater than every convergent with an
even subscript.

Proof. With the aid of Theorem 15.3, we find that

Ck+2 − Ck = (Ck+2 − Ck+1) + (Ck+1 − Ck)

=
(

pk+2

qk+2
− pk+1

qk+1

)
+

(
pk+1

qk+1
− pk

qk

)

= (−1)k+1

qk+2qk+1
+ (−1)k

qk+1qk

= (−1)k(qk+2 − qk)

qkqk+1qk+2

Recalling that qi > 0 for all i ≥ 0 and that qk+2 − qk > 0 by the lemma, it is evident
that Ck+2 − Ck has the same algebraic sign as does (−1)k . Thus, if k is an even integer,
say k = 2 j , then C2 j+2 > C2 j ; whence

C0 < C2 < C4 < · · ·
Similarly, if k is an odd integer, say k = 2 j − 1, then C2 j+1 < C2 j−1; whence

C1 > C3 > C5 > · · ·
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It remains only to show that any odd-numbered convergent C2r−1 is greater than any
even-numbered convergent C2s . Because pkqk−1 − qk pk−1 = (−1)k−1, upon dividing
both sides of the equation by qkqk−1, we obtain

Ck − Ck−1 = pk

qk
− pk−1

qk−1
= (−1)k−1

qkqk−1

This means that C2 j < C2 j−1. The effect of tying the various inequalities together is
that

C2s < C2s+2r < C2s+2r−1 < C2r−1

as desired.

To take an actual example, consider the continued fraction [2; 3, 2, 5, 2, 4, 2].
A little calculation gives the convergents

C0 = 2/1 C1 = 7/3 C2 = 16/7 C3 = 87/38

C4 = 190/83 C5 = 847/370 C6 = 1884/823

According to Theorem 15.4, these convergents satisfy the chain of inequalities

2 < 16/7 < 190/83 < 1884/823 < 847/370 < 87/38 < 7/3

This is readily visible when the numbers are expressed in decimal notation:

2 < 2.28571 · · · < 2.28915 · · · < 2.28918 · · · < 2.28947 · · · < 2.33333 · · ·

PROBLEMS 15.2

1. Express each of the rational numbers below as finite simple continued fractions:
(a) −19/51.
(b) 187/57.
(c) 71/55.
(d) 118/303.

2. Determine the rational numbers represented by the following simple continued fractions:
(a) [−2; 2, 4, 6, 8].
(b) [4; 2, 1, 3, 1, 2, 4].
(c) [0; 1, 2, 3, 4, 3, 2, 1].

3. If r = [a0; a1, a2, . . . , an], where r > 1, show that

1

r
= [0; a0, a1, . . . , an]

4. Represent the following simple continued fractions in an equivalent form, but with an
odd number of partial denominators:
(a) [0; 3, 1, 2, 3].
(b) [−1; 2, 1, 6, 1].
(c) [2; 3, 1, 2, 1, 1, 1].

5. Compute the convergents of the following simple continued fractions:
(a) [1; 2, 3, 3, 2, 1].
(b) [−3; 1, 1, 1, 1, 3].
(c) [0; 2, 4, 1, 8, 2].
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6. (a) If Ck = pk/qk denotes the kth convergent of the finite simple continued fraction
[1; 2, 3, 4, . . . , n, n + 1], show that

pn = npn−1 + npn−2 + (n − 1)pn−3 + · · · + 3p1 + 2p0 + (p0 + 1)

[Hint: Add the relations p0 = 1, p1 = 3, pk = (k + 1)pk−1 + pk−2 for k =
2, . . . , n.]

(b) Illustrate part (a) by calculating the numerator p4 for the fraction [1; 2, 3, 4, 5].
7. Evaluate pk, qk , and Ck(k = 0, 1, . . . , 8) for the simple continued fractions below; notice

that the convergents provide an approximation to the irrational numbers in parentheses:
(a) [1; 2, 2, 2, 2, 2, 2, 2, 2] (

√
2).

(b) [1; 1, 2, 1, 2, 1, 2, 1, 2] (
√

3).
(c) [2; 4, 4, 4, 4, 4, 4, 4, 4] (

√
5).

(d) [2; 2, 4, 2, 4, 2, 4, 2, 4] (
√

6).
(e) [2; 1, 1, 1, 4, 1, 1, 1, 4] (

√
7).

8. If Ck = pk/qk is the kth convergent of the simple continued fraction [a0; a1, . . . , an],
establish that

qk ≥ 2(k−1)/2 2 ≤ k ≤ n

[Hint: Observe that qk = akqk−1 + qk−2 ≥ 2qk−2.]
9. Find the simple continued fraction representation of 3.1416, and that of 3.14159.

10. If Ck = pk/qk is the kth convergent of the simple continued fraction [a0; a1, . . . , an] and
a0 > 0, show that

pk

pk−1
= [ak ; ak−1, . . . , a1, a0]

and
qk

qk−1
= [ak ; ak−1, . . . , a2, a1]

[Hint: In the first case, notice that
pk

pk−1
= ak + pk−2

pk−1

= ak + 1
pk−1

pk−2

. ]

11. By means of continued fractions determine the general solutions of each of the following
Diophantine equations:
(a) 19x + 51y = 1.
(b) 364x + 227y = 1.
(c) 18x + 5y = 24.
(d) 158x − 57y = 1.

12. Verify Theorem 15.4 for the simple continued fraction [1; 1, 1, 1, 1, 1, 1, 1].

15.3 INFINITE CONTINUED FRACTIONS

Up to this point, only finite continued fractions have been considered; and these,
when simple, represent rational numbers. One of the main uses of the theory of
continued fractions is finding approximate values of irrational numbers. For this, the
notion of an infinite continued fraction is necessary.



P1: IML

bur83147_ch15_303_352 Burton DQ032A-Elementary-v2.cls November 28, 2009 2:6

320 ELEMENTARY NUMBER THEORY

An infinite continued fraction is an expression of the form

a0 + b1

a1 + b2

a2 + b3

a3 + · · ·
where a0, a1, a2, . . . and b1, b2, b3, . . . are real numbers. An early example of a
fraction of this type is found in the work of William Brouncker who converted (in
1655) Wallis’s famous infinite product

4

π
= 3 · 3 · 5 · 5 · 7 · 7 · · ·

2 · 4 · 4 · 6 · 6 · 8 · · ·
into the identity

4

π
= 1 + 12

2 + 32

2 + 52

2 + 72

2 + · · ·
Both Wallis’s and Brouncker’s discoveries aroused considerable interest, but their
direct use in calculating approximations to π is impractical.

In evaluating infinite continued fractions and in expanding functions in con-
tinued fractions, Srinivasa Ramanujan has no rival in the history of mathematics.
He contributed many problems on continued fractions to the Journal of the Indian
Mathematical Society, and his notebooks contain about 200 results on such fractions.
G. H. Hardy, commenting on Ramanujan’s work, said “On this side [of mathematics]
most certainly I have never met his equal, and I can only compare him with Euler
or Jacobi.” Perhaps the most celebrated of Ramanujan’s fraction expansions is his
assertion that

e2π/5

⎛
⎝

√
5 + √

5

2
− 1 + √

5

2

⎞
⎠ = 1

1 + e−2π

1 + e−4π

1 + e−6π

1 + · · ·
Part of its fame rests on its inclusion by Ramanujan in his first letter to Hardy in
1913. Hardy found the identity startling and was unable to derive it, confessing later
that a proof “completely defeated” him. Although most of Ramanujan’s marvelous
formulas have now been proved, it is still not known what passage he took to discover
them.
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In this section, our discussion will be restricted to infinite simple continued
fractions. These have the form

a0 + 1

a1 + 1

a2 + 1

a3 + · · ·
where a0, a1, a2, . . . is an infinite sequence of integers, all positive except possibly
for a0. We shall use the compact notation [a0; a1, a2, . . .] to denote such a fraction.
To attach a mathematical meaning to this expression, observe that each of the finite
continued fractions

Cn = [a0; a1, a2, . . . , an] n ≥ 0

is defined. It seems reasonable therefore to define the value of the infinite continued
fraction [a0; a1, a2, . . .] to be the limit of the sequence of rational numbers Cn ,
provided, of course, that this limit exists. In something of an abuse of notation, we
shall use [a0; a1, a2, . . .] to indicate not only the infinite continued fraction, but also
its value.

The question of the existence of the just-mentioned limit is easily settled. For,
under our hypothesis, the limit not only exists but is always an irrational number.
To see this, observe that formulas previously obtained for finite continued fractions
remain valid for infinite continued fractions, because the derivation of these relations
did not depend on the finiteness of the fraction. When the upper limits on the indices
are removed, Theorem 15.4 tells us that the convergents Cn of [a0; a1, a2, . . .] satisfy
the infinite chain of inequalities:

C0 < C2 < C4 < · · · < C2n < · · · < C2n+1 < · · · < C5 < C3 < C1

Because the even-numbered convergents C2n form a monotonically increasing se-
quence, bounded above by C1, they will converge to a limit α that is greater than
each C2n . Similarly, the monotonically decreasing sequence of odd-numbered con-
vergents C2n+1 is bounded below by C0 and so has a limit α′ that is less than
each C2n+1. Let us show that these limits are equal. On the basis of the relation
p2n+1q2n − q2n+1 p2n = (−1)2n we see that

α′ − α < C2n+1 − C2n = p2n+1

q2n+1
− p2n

q2n
= 1

q2nq2n+1

whence,

0 ≤ | α′ − α | <
1

q2nq2n+1
<

1

q2
2n

Because the qi increase without bound as i becomes large, the right-hand side of this
inequality can be made arbitrarily small. If α′ and α were not the same, then a con-
tradiction would result (that is, 1/q2

2n could be made less than the value | α′ − α | ).
Thus, the two sequences of odd- and even-numbered convergents have the same
limiting value α, which means that the sequence of convergents Cn has the limit α.
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Taking our cue from these remarks, we make the following definition.

Definition 15.3. If a0, a1, a2, . . . is an infinite sequence of integers, all positive except
possibly a0, then the infinite simple continued fraction [a0; a1, a2, . . .] has the value

lim
n→∞[a0; a1, a2, . . . , an]

It should be emphasized again that the adjective “simple” indicates that the
partial denominators ak are all integers; because the only infinite continued fractions
to be considered are simple, we shall often omit the term in what follows and call
them infinite continued fractions.

Perhaps the most elementary example is afforded by the infinite continued frac-
tion [1; 1, 1, 1, . . .]. The argument of Example 15.1 showed that the nth convergent
Cn = [1; 1, 1, . . . , 1], where the integer 1 appears n times, is equal to

Cn = un+1

un
n ≥ 0

a quotient of successive Fibonacci numbers. If x denotes the value of the continued
fraction [1; 1, 1, 1, . . .], then

x = lim
n→∞ Cn = lim

n→∞
un+1

un
= lim

n→∞
un + un−1

un

= lim
n→∞ 1 + 1

un

un−1

= 1 + 1

lim
n→∞

un

un−1

= 1 + 1

x

This gives rise to the quadratic equation x2 − x − 1 = 0, whose only positive root
is x = (1 + √

5)/2. Hence,

1 + √
5

2
= [1; 1, 1, 1, . . .]

There is one situation that occurs often enough to merit special terminology. If
an infinite continued fraction, such as [3; 1, 2, 1, 6, 1, 2, 1, 6, . . . ], contains a block
of partial denominators b1, b2, . . . , bn that repeats indefinitely, the fraction is called
periodic. The custom is to write a periodic continued fraction

[a0; a1, . . . , am, b1, . . . , bn, b1, . . . , bn, . . .]

more compactly as

[a0; a1, . . . , am, b1, . . . , bn]

where the overbar indicates that this block of integers repeats over and over. If
b1, b2, . . . , bn is the smallest block of integers that constantly repeats, we say that
b1, b2, . . . , bn is the period of the expansion and that the length of the period is n.
Thus, for example, [3; 1, 2, 1, 6] would denote [3; 1, 2, 1, 6, 1, 2, 1, 6, . . .], a con-
tinued fraction whose period 1, 2, 1, 6 has length 4.

We saw earlier that every finite continued fraction is represented by a rational
number. Let us now consider the value of an infinite continued fraction.
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Theorem 15.5. The value of any infinite continued fraction is an irrational number.

Proof. Let us suppose that x denotes the value of the infinite continued fraction
[a0; a1, a2, . . .]; that is, x is the limit of the sequence of convergents

Cn = [a0; a1, a2, . . . , an] = pn

qn

Because x lies strictly between the successive convergents Cn and Cn+1, we have

0 < | x − Cn | < | Cn+1 − Cn | =
∣∣∣∣ pn+1

qn+1
− pn

qn

∣∣∣∣ = 1

qnqn+1

With the view to obtaining a contradiction, assume that x is a rational number; say,
x = a/b, where a and b > 0 are integers. Then

0 <

∣∣∣∣ a

b
− pn

qn

∣∣∣∣ <
1

qnqn+1

and so, upon multiplication by the positive number bqn ,

0 < | aqn − bpn | <
b

qn+1

We recall that the values of qi increase without bound as i increases. If n is chosen so
large that b < qn+1, the result is

0 < | aqn − bpn | < 1

This says that there is a positive integer, namely | aqn − bpn |, between 0 and 1—an
obvious impossibility.

We now ask whether two different infinite continued fractions can represent the
same irrational number. Before giving the pertinent result, let us observe that the
properties of limits allow us to write an infinite continued fraction [a0; a1, a2, . . .] as

[a0; a1, a2, . . .] = lim
n→∞[a0; a1, . . . , an]

= lim
n→∞

(
a0 + 1

[a1; a2, . . . , an]

)

= a0 + 1

lim
n→∞[a1; a2, . . . , an]

= a0 + 1

[a1; a2, a3, . . .]

Our theorem is stated as follows.

Theorem 15.6. If the infinite continued fractions [a0; a1, a2, . . .] and [b0; b1, b2, . . .]
are equal, then an = bn for all n ≥ 0.

Proof. If x = [a0; a1, a2, . . .], then C0 < x < C1, which is the same as saying that
a0 < x < a0 + 1/a1. Knowing that the integer a1 ≥ 1, this produces the inequality
a0 < x < a0 + 1. Hence, [x] = a0, where [x] is the traditional notation for the greatest
integer or “bracket” function (page 117).
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Now assume that [a0; a1, a2, . . .] = x = [b0; b1, b2, . . .] or, to put it in a different
form,

a0 + 1

[a1; a2, . . .]
= x = b0 + 1

[b1; b2, . . .]

By virtue of the conclusion of the first paragraph, we have a0 = [x] = b0, from which it
may then be deduced that [a1; a2, . . .] = [b1; b2, . . .]. When the reasoning is repeated,
we next conclude that a1 = b1 and that [a2; a3, . . .] = [b2; b3, . . .]. The process con-
tinues by mathematical induction, thereby giving an = bn for all n ≥ 0.

Corollary. Two distinct infinite continued fractions represent two distinct irrational
numbers.

Example 15.4. To determine the unique irrational number represented by the infinite
continued fraction x = [3; 6, 1, 4], let us write x = [3; 6, y], where

y = [1; 4] = [1; 4, y]

Then

y = 1 + 1

4 + 1

y

= 1 + y

4y + 1
= 5y + 1

4y + 1

which leads to the quadratic equation

4y2 − 4y − 1 = 0

Inasmuch as y > 0 and this equation has only one positive root, we may infer that

y = 1 + √
2

2

From x = [3; 6, y], we then find that

x = 3 + 1

6 + 1

1 + √
2

2

= 25 + 19
√

2

8 + 6
√

2

= (25 + 19
√

2)(8 − 6
√

2)

(8 + 6
√

2)(8 − 6
√

2)

= 14 − √
2

4

that is,

[3; 6, 1, 4] = 14 − √
2

4

Our last theorem shows that every infinite continued fraction represents a unique
irrational number. Turning matters around, we next establish that an arbitrary irra-
tional number x0 can be expanded into an infinite continued fraction [a0; a1, a2, . . .]
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that converges to the value x0. The sequence of integers a0, a1, a2, . . . is defined as
follows: Using the bracket function, we first let

x1 = 1

x0 − [x0]
x2 = 1

x1 − [x1]
x3 = 1

x2 − [x2]
· · ·

and then take

a0 = [x0] a1 = [x1] a2 = [x2] a3 = [x3] · · ·
In general, the ak are given inductively by

ak = [xk] xk+1 = 1

xk − ak
k ≥ 0

It is evident that xk+1 is irrational whenever xk is irrational: thus, because we are
confining ourselves to the case in which x0 is an irrational number, all xk are irrational
by induction. Thus,

0 < xk − ak = xk − [xk] < 1

and we see that

xk+1 = 1

xk − ak
> 1

so that the integer ak+1 = [xk+1] ≥ 1 for all k ≥ 0. This process therefore leads to
an infinite sequence of integers a0, a1, a2, . . . , all positive except perhaps for a0.

Employing our inductive definition in the form

xk = ak + 1

xk+1
k ≥ 0

through successive substitutions, we obtain

x0 = a0 + 1

x1

= a0 + 1

a1 + 1

x2

= a0 + 1

a1 + 1

a2 + 1

x3
...
= [a0; a1, a2, . . . , an, xn+1]

for every positive integer n. This makes one suspect—and it is our task to show—that
x0 is the value of the infinite continued fraction [a0; a1, a2, . . .].

For any fixed integer n, the first n+1 convergents Ck = pk/qk , where 0 ≤ k ≤ n,
of [a0; a1, a2, . . .] are the same as the first n + 1 convergents of the finite continued
fraction [a0; a1, a2, . . . , an, xn+1]. If we denote the (n + 2)th convergent of the latter
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by C ′
n+1, then the argument used in the proof of Theorem 15.2 to obtain Cn+1 from

Cn by replacing an by an + 1/an+1 works equally well in the present setting; this
enables us to obtain C ′

n+1 from Cn+1 by replacing an+1 by xn+1:

x0 = C ′
n+1 = [a0; a1, a2, . . . , an, xn+1]

= xn+1 pn + pn−1

xn+1qn + qn−1

Because of this,

x0 − Cn = xn+1 pn + pn−1

xn+1qn + qn−1
− pn

qn

= (−1)(pnqn−1 − qn pn−1)

(xn+1qn + qn−1)qn
= (−1)n

(xn+1qn + qn−1)qn

where the last equality relies on Theorem 15.3. Now xn+1 > an+1, and therefore

| x0 − Cn | = 1

(xn+1qn + qn−1)qn
<

1

(an+1qn + qn−1)qn
= 1

qn+1qn

Because the integers qk are increasing, the implication is that

x0 = lim
n→∞ Cn = [a0; a1, a2, . . .]

Let us sum up our conclusions in Theorem 15.7.

Theorem 15.7. Every irrational number has a unique representation as an infinite con-
tinued fraction, the representation being obtained from the continued fraction algorithm
described.

Incidentally, our argument reveals a fact worth recording separately.

Corollary. If pn/qn is the nth convergent to the irrational number x , then

∣∣∣∣ x − pn

qn

∣∣∣∣ <
1

qn+1qn
≤ 1

q2
n

We give two examples to illustrate the use of the continued fraction algorithm
in finding the representation of a given irrational number as an infinite continued
fraction.

Example 15.5. For our first example, consider x = √
23 ≈ 4.8. The successive irra-

tional numbers xk (and therefore the integers ak = [xk]) can be computed rather easily,
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with the calculations exhibited below:

x0 =
√

23 = 4 + (
√

23 − 4) a0 = 4

x1 = 1

x0 − [x0]
= 1√

23 − 4
=

√
23 + 4

7
= 1 +

√
23 − 3

7
a1 = 1

x2 = 1

x1 − [x1]
= 7√

23 − 3
=

√
23 + 3

2
= 3 +

√
23 − 3

2
a2 = 3

x3 = 1

x2 − [x2]
= 2√

23 − 3
=

√
23 + 3

7
= 1 +

√
23 − 4

7
a3 = 1

x4 = 1

x3 − [x3]
= 7√

23 − 4
=

√
23 + 4 = 8 + (

√
23 − 4) a4 = 8

Because x5 = x1, also x6 = x2, x7 = x3, x8 = x4; then we get x9 = x5 = x1, and so
on, which means that the block of integers 1, 3, 1, 8 repeats indefinitely. We find that
the continued fraction expansion of

√
23 is periodic with the form

√
23 = [4; 1, 3, 1, 8, 1, 3, 1, 8, . . .]

= [4; 1, 3, 1, 8]

Example 15.6. To furnish a second illustration, let us obtain several of the convergents
of the continued fraction of the number

π = 3.141592653 · · ·
defined by the ancient Greeks as the ratio of the circumference of a circle to its diameter.
The letter π , from the Greek word perimetros, was never employed in antiquity for this
ratio; it was Euler’s adoption of the symbol in his many popular textbooks that made
it widely known and used.

By straightforward calculations, we see that

x0 = π = 3 + (π − 3) a0 = 3

x1 = 1

x0 − [x0]
= 1

0.14159265 · · · = 7.06251330 · · · a1 = 7

x2 = 1

x1 − [x1]
= 1

0.06251330 · · · = 15.99659440 · · · a2 = 15

x3 = 1

x2 − [x2]
= 1

0.99659440 · · · = 1.00341723 · · · a3 = 1

x4 = 1

x3 − [x3]
= 1

0.00341723 · · · = 292.63467 · · · a4 = 292

...

Thus, the infinite continued fraction for π starts out as

π = [3; 7, 15, 1, 292, . . .]

but, unlike the case of
√

23 in which all the partial denominators an are explicitly
known, there is no pattern that gives the complete sequence of an . The first five
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convergents are

3

1
,

22

7
,

333

106
,

355

113
,

103993

33102

As a check on the Corollary to Theorem 15.7, notice that we should have∣∣∣∣ π − 22

7

∣∣∣∣ <
1

72

Now 314/100 < π < 22/7, and therefore∣∣∣∣ π − 22

7

∣∣∣∣ <
22

7
− 314

100
= 1

7 · 50
<

1

72

as expected.

Unless the irrational number x assumes some very special form, it may be
impossible to give the complete continued fraction expansion of x . We can prove,
for instance, that the expansion for x becomes ultimately periodic if and only if
x is an irrational root of a quadratic equation with integral coefficients, that is,
if x takes the form r + s

√
d, where r and s �= 0 are rational numbers and d is

a positive integer that is not a perfect square. But among other irrational numbers,
there are very few whose representations seem to exhibit any regularity. An exception
is another positive constant that has occupied the attention of mathematicians for
many centuries, namely,

e = 2.718281828 · · ·
the base of the system of natural logarithms. In 1737, Euler showed that

e − 1

e + 1
= [0; 2, 6, 10, 14, 18, . . .]

where the partial denominators form an arithmetic progression, and that

e2 − 1

e2 + 1
= [0; 1, 3, 5, 7, 9, . . .]

The continued fraction representation of e itself (also found by Euler) is a bit more
complicated, yet still has a pattern:

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .]

with the even integers subsequently occurring in order and separated by two 1’s.
With regard to the symbol e, its use is also original with Euler: it appeared in print
for the first time in one of his textbooks.

In the introduction to analysis, it is usually demonstrated that e can be defined
by the infinite series

e = 1 + 1

1!
+ 1

2!
+ 1

3!
+ 1

4!
+ · · ·

If the reader is willing to accept this fact, then Euler’s proof of the irrationality of e
can be given very quickly. Suppose to the contrary that e is rational, say e = a/b,
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where a and b are positive integers. Then for n > b, the number

N = n!

(
e −

(
1 + 1

1!
+ 1

2!
+ · · · + 1

n!

))

= n!

(
a

b
− 1 − 1

1!
− 1

2!
− · · · − 1

n!

)

is a positive integer because multiplication by n! clears all the denominators. When
e is replaced by its series expansion, this becomes

N = n!

(
1

(n + 1)!
+ 1

(n + 2)!
+ 1

(n + 3)!
+ · · ·

)

= 1

n + 1
+ 1

(n + 1)(n + 2)
+ 1

(n + 1)(n + 2)(n + 3)
+ · · ·

<
1

n + 1
+ 1

(n + 1)(n + 2)
+ 1

(n + 2)(n + 3)
+ · · ·

= 1

n + 1
+

(
1

n + 1
− 1

n + 2

)
+

(
1

n + 2
− 1

n + 3

)
+ · · ·

= 2

n + 1
< 1

Because the inequality 0 < N < 1 is impossible for an integer, e must be irrational.
The exact nature of the number π offers greater difficulties; J. H. Lambert (1728–
1777), in 1761, communicated to the Berlin Academy an essentially rigorous proof
of the irrationality of π .

Given an irrational number x , a natural question is to ask how closely, or with
what degree of accuracy, it can be approximated by rational numbers. One way of
approaching the problem is to consider all rational numbers with a fixed denominator
b > 0. Because x lies between two such rational numbers, say c/b < x < (c + 1)/b,
it follows that ∣∣∣ x − c

b

∣∣∣ <
1

b

Better yet, we can write ∣∣∣ x − a

b

∣∣∣ <
1

2b

where a = c or a = c + 1, whichever choice may be appropriate. The continued
fraction process permits us to prove a result that considerably strengthens the last-
written inequality, namely: Given any irrational number x , there exist infinitely many
rational numbers a/b in lowest terms that satisfy∣∣∣ x − a

b

∣∣∣ <
1

b2

In fact, by the corollary to Theorem 15.7, any of the convergents pn/qn of the
continued fraction expansion of x can play the role of the rational number a/b. The
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forthcoming theorem asserts that the convergents pn/qn have the property of being
the best approximations, in the sense of giving the closest approximation to x among
all rational numbers a/b with denominators qn or less.

For clarity, the technical core of the theorem is placed in the following lemma.

Lemma. Let pn/qn be the nth convergent of the continued fraction representing the
irrational number x . If a and b are integers, with 1 ≤ b < qn+1, then

| qn x − pn | ≤ | bx − a |

Proof. Consider the system of equations

pnα + pn+1β = a

qnα + qn+1β = b

As the determinant of the coefficients is pnqn+1 − qn pn+1 = (−1)n+1, the system has
the unique integral solution

α = (−1)n+1(aqn+1 − bpn+1)

β = (−1)n+1(bpn − aqn)

It is well to notice that α �= 0. In fact, α = 0 yields aqn+1 = bpn+1 and, because
gcd(pn+1, qn+1) = 1, this means that qn+1 | b or b ≥ qn+1, which is contrary to the
hypothesis. In the event that β = 0, the inequality stated in the lemma is clearly true.
For β = 0 leads to a = pnα, b = qnα and, as a result,

| bx − a | = | α | | qn x − pn | ≥ | qn x − pn |
Thus, there is no harm in assuming hereafter that β �= 0.

When β �= 0, we argue that α and β must have opposite signs. If β < 0, then
the equation qnα = b − qn+1β indicates that qnα > 0 and, in turn, α > 0. On the
other hand, if β > 0, then b < qn+1 implies that b < βqn+1, and therefore αqn =
b − qn+1β < 0; this makes α < 0. We also infer that, because x stands between the
consecutive convergents pn/qn and pn+1/qn+1,

qn x − pn and qn+1x − pn+1

will have opposite signs. The point of this reasoning is that the numbers

α(qn x − pn) and β(qn+1x − pn+1)

must have the same sign; in consequence, the absolute value of their sum equals the
sum of their separate absolute values. It is this crucial fact that allows us to complete
the proof quickly:

| bx − a | = | (qnα + qn+1β)x − (pnα + pn+1β) |
= | α(qn x − pn) + β(qn+1x − pn+1) |
= | α | | qn x − pn | + | β | | qn+1x − pn+1 |
> | α | | qn x − pn |
≥ | qn x − pn |

which is the desired inequality.
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The convergents pn/qn are best approximations to the irrational number x in
that every other rational number with the same or smaller denominator differs from
x by a greater amount.

Theorem 15.8. If 1 ≤ b ≤ qn , the rational number a/b satisfies∣∣∣∣ x − pn

qn

∣∣∣∣ ≤
∣∣∣ x − a

b

∣∣∣

Proof. If it were to happen that∣∣∣∣ x − pn

qn

∣∣∣∣ >

∣∣∣ x − a

b

∣∣∣
then

| qn x − pn | = qn

∣∣∣∣ x − pn

qn

∣∣∣∣ > b
∣∣∣ x − a

b

∣∣∣ = | bx − a |

violating the conclusion of the lemma.

Historians of mathematics have focused considerable attention on the attempts
of early societies to arrive at an approximation to π , perhaps because the increas-
ing accuracy of the results seems to offer a measure of the mathematical skills of
different cultures. The first recorded scientific effort to evaluate π appeared in the
Measurement of a Circle by the great Greek mathematician of ancient Syracuse,
Archimedes (287–212 B.C.). Substantially, his method for finding the value of π

was to inscribe and circumscribe regular polygons about a circle, determine their
perimeters, and use these as lower and upper bounds on the circumference. By this
means, and using a polygon of 96 sides, he obtained the two approximations in the
inequality

223/71 < π < 22/7

Theorem 15.8 provides insight into why 22/7, the so-called Archimedean value
of π , was used so frequently in place of π ; there is no fraction, given in lowest terms,
with a smaller denominator that furnishes a better approximation. Whereas∣∣∣∣ π − 22

7

∣∣∣∣ ≈ 0.0012645 and

∣∣∣∣ π − 223

71

∣∣∣∣ ≈ 0.0007476

Archimedes’ value of 223/71, which is not a convergent of π , has a denominator
exceeding q1 = 7. Our theorem tells us that 333/106 (a ratio for π employed in
Europe in the 16th century) will approximate π more closely than any rational
number with a denominator less than or equal to 106; indeed,∣∣∣∣ π − 333

106

∣∣∣∣ ≈ 0.0000832

Because of the size of q4 = 33102, the convergent p3/q3 = 355/113 allows one
to approximate π with a striking degree of accuracy; from the corollary to
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Theorem 15.7, we have ∣∣∣∣ π − 355

113

∣∣∣∣ <
1

113 · 33102
<

3

107

The noteworthy ratio of 355/113 was known to the early Chinese mathematician
Tsu Chung-chi (430–501); by some reasoning not stated in his works, he gave 22/7
as an “inaccurate value” of π and 355/113 as the “accurate value.” The accuracy of
the latter ratio was not equaled in Europe until the end of the 16th century, when
Adriaen Anthoniszoon (1527–1617) rediscovered the identical value.

This is a convenient place to record a theorem that says that any “close” (in a
suitable sense) rational approximation to x must be a convergent to x . There would
be a certain neatness to the theory if∣∣∣ x − a

b

∣∣∣ <
1

b2

implied that a/b = pn/qn for some n; although this is too much to hope for, a slightly
sharper inequality guarantees the same conclusion.

Theorem 15.9. Let x be an arbitrary irrational number. If the rational number a/b,
where b ≥ 1 and gcd(a, b) = 1, satisfies

∣∣∣ x − a

b

∣∣∣ <
1

2b2

then a/b is one of the convergents pn/qn in the continued fraction representation of x .

Proof. Assume that a/b is not a convergent of x . Knowing that the numbers qk form
an increasing sequence, there exists a unique integer n for which qn ≤ b < qn+1. For
this n, the last lemma gives the first inequality in the chain

| qn x − pn | ≤ | bx − a | = b
∣∣∣ x − a

b

∣∣∣ <
1

2b

which may be recast as ∣∣∣∣ x − pn

qn

∣∣∣∣ <
1

2bqn

In view of the supposition that a/b �= pn/qn , the difference bpn − aqn is a nonzero
integer, whence 1 ≤ | bpn − aqn |. We are able to conclude at once that

1

bqn
≤

∣∣∣∣ bpn − aqn

bqn

∣∣∣∣ =
∣∣∣∣ pn

qn
− a

b

∣∣∣∣ ≤
∣∣∣∣ pn

qn
− x

∣∣∣∣ +
∣∣∣ x − a

b

∣∣∣ <
1

2bqn
+ 1

2b2

This produces the contradiction b < qn , ending the proof.

PROBLEMS 15.3

1. Evaluate each of the following infinite simple continued fractions:
(a) [2; 3].
(b) [0; 1, 2, 3].
(c) [2; 1, 2, 1].
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(d) [1; 2, 3, 1].
(e) [1; 2, 1, 2, 12].

2. Prove that if the irrational number x > 1 is represented by the infinite continued fraction
[a0; a1, a2, . . .], then 1/x has the expansion [0; a0, a1, a2, . . .]. Use this fact to find the
value of [0; 1, 1, 1, . . .] = [0; 1].

3. Evaluate [1; 2, 1] and [1; 2, 3, 1].
4. Determine the infinite continued fraction representation of each irrational number below:

(a)
√

5.
(b)

√
7.

(c)
1 + √

13

2
.

(d)
5 + √

37

4
.

(e)
11 + √

30

13
.

5. (a) For any positive integer n, show that
√

n2 + 1 = [n; 2n],
√

n2 + 2 = [n; n, 2n] and√
n2 + 2n = [n; 1, 2n].

[Hint: Notice that

n +
√

n2 + 1 = 2n + (
√

n2 + 1 − n) = 2n + 1

n + √
n2 + 1

. ]

(b) Use part (a) to obtain the continued fraction representations of
√

2,
√

3,
√

15, and√
37.

6. Among the convergents of
√

15, find a rational number that approximates
√

15 with
accuracy to four decimal places.

7. (a) Find a rational approximation to e = [2; 1, 2, 1, 1, 4, 1, 1, 6, . . .] correct to four dec-
imal places.

(b) If a and b are positive integers, show that the inequality e < a/b < 87/32 implies
that b ≥ 39.

8. Prove that of any two consecutive convergents of the irrational number x , at least one,
a/b, satisfies the inequality ∣∣∣ x − a

b

∣∣∣ <
1

2b2

[Hint: Because x lies between any two consecutive convergents,
1

qnqn+1
=

∣∣∣∣ pn+1

qn+1
− pn

qn

∣∣∣∣ =
∣∣∣∣ x − pn+1

qn+1

∣∣∣∣ +
∣∣∣∣ x − pn

qn

∣∣∣∣
Now argue by contradiction.]

9. Given the infinite continued fraction [1; 3, 1, 5, 1, 7, 1, 9, . . .], find the best rational ap-
proximation a/b with
(a) denominator b < 25.
(b) denominator b < 225.

10. First show that | (1 + √
10)/3 − 18/13 | < 1/(2 · 132) and then verify that 18/13 is a

convergent of (1 + √
10)/3.

11. A famous theorem of A. Hurwitz (1891) says that for any irrational number x , there exist
infinitely many rational numbers a/b such that∣∣∣ x − a

b

∣∣∣ <
1√
5b2

Taking x = π , obtain three rational numbers satisfying this inequality.
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12. Assume that the continued fraction representation for the irrational number x ultimately
becomes periodic. Mimic the method used in Example 15.4 to prove that x is of the form
r + s

√
d, where r and s �= 0 are rational numbers and d > 0 is a nonsquare integer.

13. Let x be an irrational number with convergents pn/qn . For every n ≥ 0, verify the fol-
lowing:

(a)
1

2qnqn+1
<

∣∣∣∣ x − pn

qn

∣∣∣∣ <
1

qnqn+1
.

(b) The convergents are successively closer to x in the sense that∣∣∣∣ x − pn

qn

∣∣∣∣ <

∣∣∣∣ x − pn−1

qn−1

∣∣∣∣
[Hint: Rewrite the relation

x = xn+1 pn + pn−1

xn+1qn + qn−1

as xn+1(xqn − pn) = −qn−1(x − pn−1/qn−1).]

15.4 FAREY FRACTIONS

Another approach to approximating real numbers by rationals uses what is known
as Farey fractions, or the Farey sequence. For a positive integer n, these are defined
as follows:

Definition 15.4. The Farey fractions of order n, denoted Fn , are a set of rational num-
bers r

s with 0 ≤ r ≤ s ≤ n and gcd(r, s) = 1. They are written in order of increasing
size. The first few Fn are

F1 =
{

0

1
,

1

1

}

F2 =
{

0

1
,

1

2
,

1

1

}

F3 =
{

0

1
,

1

3
,

1

2
,

2

3
,

1

1

}

F4 =
{

0

1
,

1

4
,

1

3
,

1

2
,

2

3
,

3

4
,

1

1

}

F5 =
{

0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1

}

F6 =
{

0

1
,

1

6
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

5

6
,

1

1

}

Notice that the fractions that occur in any Fn will thereafter occur in any Fm , for m ≥ n.
Farey fractions have a curious history. The English geologist John Farey (1766–

1826) published, without proof, several properties of this series of fractions in the
Philosophical Magazine in 1816. The mathematician Augustin Cauchy saw the article
and supplied the demonstrations later in the same year, naming the fractions after Farey.
It subsequently turned out that C. H. Haros had proved the results 14 years earlier, in the
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Journal de l’Ecole Polytechnique. Farey, of course, had never claimed to have proved
anything.

We begin our investigation with one of the results stated by Farey but established
earlier by Haros.

Theorem 15.10. If a
b < c

d are consecutive fractions in the Farey sequence Fn , then
bc − ad = 1.

Proof. Because gcd(a, b) = 1, the linear equation bx − ay = 1 has a solution x = x0,
y = y0. Moreover, x = x0 + at , y = y0 + bt will also be a solution for any integer t .
Choose t = t0 so that

0 ≤ n − b < y0 + bt0 ≤ n

and set x = x0 + bt0, y = y0 + bt0. Since y ≤ n, x
y will be a fraction in Fn . Also,

x

y
= a

b
+ 1

by
>

a

b

so that x
y occurs later in the Farey sequence than a

b . If x
y �= c

d , then x
y > c

d and we obtain

x

y
− c

d
= dx − cy

dy
≥ 1

dy

as well as
c

d
− a

b
= bc − ad

bd
≥ 1

bd

Adding the two inequalities gives

x

y
− a

b
≥ 1

dy
− 1

bd
= b + y

bdy

But b + y > n (recall that n − b < y) and d ≤ n, resulting in the contradiction

1

by
= bx − ay

by
= x

y
− a

b
= b + y

bdy
>

n

bdy
≥ 1

by

Thus, x
y = c

d and the equation bx − ay = 1 becomes bc − ad = 1.

If a
b < c

d are two fractions in the Farey sequence Fn , we define their mediant
fraction to be the expression a+c

b+d . Theorem 15.10 allows us to conclude that the
mediant lies between the given fractions. For the relations

a(b + d) − b(a + c) = ad − bc < 0

(a + c)d − (b + d)c = ad − bc < 0

together imply that

a

b
<

a + c

b + d
<

c

d

Notice that if a
b < c

d are consecutive fractions in Fn , and b + d ≤ n, then the mediant
would be a member of Fn lying between them, an obvious contradiction. Thus, for
successive fractions, b + d ≥ n + 1.
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It can be shown that those fractions that belong to Fn+1 but not to Fn are mediants
of fractions in Fn . In passing from F4 to F5, for instance, the new members are

1

5
= 0 + 1

1 + 4
,

2

5
= 1 + 1

3 + 2
,

3

5
= 1 + 2

2 + 3
,

4

5
= 3 + 1

4 + 1
.

This enables one to build up the sequence Fn+1 from Fn by inserting mediants with
the appropriate denominator.

In using the mediant of two fractions in Fn to obtain a new member of Fn+1,
the three fractions need not be consecutive in Fn+1 (consider 1

3 < 3
8 < 2

3 in F8). We
can say that if a

b < c
d < e

f are three consecutive fractions in any Farey sequence,
then c

d is the mediant of a
b and e

f . For, appealing once more to Theorem 15.10, the
equations

bc − ad = 1 de − c f = 1

lead to (a + e)d = c(b + f ). It follows that

c

d
= a + e

b + f

which is the mediant of a
b and e

f . As an illustration, the three fractions 3
8 < 2

5 < 3
7

are consecutive in F8 with 2
5 = 3+3

8+7 .

Let us apply some of these ideas to show how an irrational number can be
approximated, relatively well, by a rational number.

Theorem 15.11. For any irrational number 0 < x < 1 and integer n > 0, there exists
a fraction u

v in Fn such that |x − u
v | < 1

v(n+1) .

Proof. In the Farey sequence Fn , there are consecutive fractions a
b < c

d such that either

a

b
< x <

a + c

b + d
or

a + c

b + d
< x <

c

d

where a+c
b+d is the mediant of the two fractions. Because we know bc − ad = 1 and

b + d ≥ n + 1, we can see that either

x − a

b
<

a + c

b + d
− a

b
= bc − ad

b(b + d)
≤ 1

b(n + 1)
or

c

d
− x <

c

d
− a + c

b + d
= bc − ad

d(b + d)
<

1

d(n + 1)

Depending on the case, take u
v = a

b or u
v = c

d .

This result can be extended beyond the unit interval with the following corollary.

Corollary. Given a positive irrational number x and an integer n > 0, there is a rational
number a

b with 0 < b ≤ n such that |x − a
b | < 1

b(n+1) .
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Proof. The greatest integer function allows us to write x = [x] + r where 0 < r < 1.

By the theorem, there is a fraction u
v for which

∣∣∣r − u

v

∣∣∣ <
1

v(n + 1)

Taking a = [x]v + u and b = v , it follows that
∣∣∣x − a

b

∣∣∣ =
∣∣∣∣x − [x]v + u

v

∣∣∣∣ =
∣∣∣r − u

v

∣∣∣ <
1

v(n + 1)
= 1

b(n + 1)

Hence everything is proved.

We finish with an example illustrating the corollary.

Example 15.7. Let us determine a fraction a
b with 0 < b ≤ 5 such that |√7 − a

b | ≤ 1
6b .

The greatest integer function yields [
√

7] − 2 = 0.64755 . . . . For the Farey sequence
F5, the value 0.64755 . . . lies in the interval between consecutive fractions 3

5 and 2
3 .

The mediant of the two fractions is 5
8 = 0.625 so that 5

8 < 0.64755 . . . . It follows from
Theorem 15.11 that ∣∣∣∣0.64755 . . . − 2

3

∣∣∣∣ <
1

6 · 3

The argument employed in the corollary shifts this inequality into∣∣∣∣
√

7 − 8

3

∣∣∣∣ <
1

6 · 3

so that 8
3 is the fraction sought.

PROBLEMS 15.4

1. List in ascending order the fractions that appear in the Farey sequences F7 and F8.
2. In terms of the Euler φ-function, show that the number of fractions in the Farey sequence

Fn is 1 + φ(1) + φ(2) + · · · + φ(n).
3. If a

b < c
d are consecutive fractions in the sequence Fn , prove that either b > n

2 or d > n
2 .

4. Verify that if a
b < c

d are two fractions in Fn adjacent to 1
2 , then a

b + c
d = 1.

5. Obtain the immediate successor to the fraction 5
8 in the Farey sequence F11.

[Hint: Use the initial part of Theorem 15.10.]
6. Find a fraction a

b , with 0 < b ≤ 7, such that |√3 − a
b | ≤ 1

8b .

7. Obtain a fraction a
b , with 0 < b ≤ 8, satisfying |π − a

b | ≤ 1
9b .

15.5 PELL’S EQUATION

What little action Fermat took to publicize his discoveries came in the form of
challenges to other mathematicians. Perhaps he hoped in this way to convince
them that his new style of number theory was worth pursuing. In January of 1657,
Fermat proposed as a challenge to the European mathematical community—thinking
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probably in the first place of John Wallis, England’s most renowned practitioner be-
fore Newton—a pair of problems:

1. Find a cube which, when increased by the sum of its proper divisors, becomes a
square; for example, 73 + (1 + 7 + 72) = 202.

2. Find a square which, when increased by the sum of its proper divisors, becomes
a cube.

On hearing of the contest, Fermat’s favorite correspondent, Bernhard Frénicle de
Bessy, quickly supplied a number of answers to the first problem; typical of these
is (2 · 3 · 5 · 13 · 41 · 47)3, which when increased by the sum of its proper divisors
becomes (27 · 32 · 52 · 7 · 13 · 17 · 29)2. While Frénicle advanced to solutions in still
larger composite numbers, Wallis dismissed the problems as not worth his effort,
writing, “Whatever the details of the matter, it finds me too absorbed by numerous
occupations for me to be able to devote my attention to it immediately; but I can
make at this moment this response: The number 1 in and of itself satisfies both
demands.” Barely concealing his disappointment, Frénicle expressed astonishment
that a mathematician as experienced as Wallis would have made only the trivial
response when, in view of Fermat’s stature, he should have sensed the problem’s
greater depths.

Fermat’s interest, indeed, lay in general methods, not in the wearying compu-
tation of isolated cases. Both Frénicle and Wallis overlooked the theoretic aspect
that the challenge problems were meant to reveal on careful analysis. Although the
phrasing was not entirely precise, it seems clear that Fermat had intended the first of
his queries to be solved for cubes of prime numbers. To put it otherwise, the problem
called for finding all integral solutions of the equation

1 + x + x2 + x3 = y2

or equivalently,

(1 + x)(1 + x2) = y2

where x is an odd integer. Because 2 is the only prime that divides both factors on
the left-hand side of this equation, it may be written as

ab =
( y

2

)2
gcd(a, b) = 1

But if the product of two relatively prime integers is a perfect square, then each of
them must be a square; hence, a = u2, b = v2 for some u and v , so that

1 + x = 2a = 2u2 1 + x2 = 2b = 2v2

This means that any integer x that satisfies Fermat’s first problem must be a solution
of the pair of equations

x = 2u2 − 1 x2 = 2v2 − 1

the second being a particular case of the equation x2 = dy2 ± 1.
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In February 1657, Fermat issued his second challenge, dealing directly with the
theoretic point at issue: Find a number y that will make dy2 + 1 a perfect square,
where d is a positive integer that is not a square; for example, 3 · 12 + 1 = 22 and
5 · 42 + 1 = 92. If, said Fermat, a general rule cannot be obtained, find the small-
est values of y that will satisfy the equations 61y2 + 1 = x2; or 109y2 + 1 = x2.
Frénicle proceeded to calculate the smallest positive solutions of x2 − dy2 = 1 for
all permissible values of d up to 150 and suggested that Wallis extend the table to
d = 200 or at least solve x2 − 151y2 = 1 and x2 − 313y2 = 1, hinting that the sec-
ond equation might be beyond Wallis’s ability. In reply, Wallis’s patron Lord William
Brouncker of Ireland stated that it had only taken him an hour or so to discover
that

(126862368)2 − 313(7170685)2 = −1

and therefore y = 2 · 7170685 · 126862368 gives the desired solution to
x2 − 313y2 = 1; Wallis solved the other concrete case, furnishing

(1728148040)2 − 151(140634693)2 = 1

The size of these numbers in comparison with those arising from other values
of d suggests that Fermat was in possession of a complete solution to the problem,
but this was never disclosed (later, he affirmed that his method of infinite descent
had been used with success to show the existence of an infinitude of solutions
of x2 − dy2 = 1). Brouncker, under the mistaken impression that rational and not
necessarily integral values were allowed, had no difficulty in supplying an answer;
he simply divided the relation

(r2 + d)2 − d(2r )2 = (r2 − d)2

by the quantity (r2 − d)2 to arrive at the solution

x = r2 + d

r2 − d
y = 2r

r2 − d

where r �= √
d is an arbitrary rational number. This, needless to say, was rejected by

Fermat, who wrote that “solutions in fractions, which can be given at once from the
merest elements of arithmetic, do not satisfy me.” Now informed of all the conditions
of the challenge, Brouncker and Wallis jointly devised a tentative method for solving
x2 − dy2 = 1 in integers, without being able to give a proof that it will always work.
Apparently the honors rested with Brouncker, for Wallis congratulated Brouncker
with some pride that he had “preserved untarnished the fame that Englishmen have
won in former times with Frenchmen.”

After having said all this, we should record that Fermat’s well-directed effort
to institute a new tradition in arithmetic through a mathematical joust was largely
a failure. Save for Frénicle, who lacked the talent to vie in intellectual combat with
Fermat, number theory had no special appeal to any of his contemporaries. The
subject was permitted to fall into disuse, until Euler, after the lapse of nearly a
century, picked up where Fermat had left off. Both Euler and Lagrange contributed
to the resolution of the celebrated problem of 1657. By converting

√
d into an infinite
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continued fraction, Euler (in 1759) invented a procedure for obtaining the smallest
integral solution of x2 − dy2 = 1; however, he failed to show that the process leads
to a solution other than x = 1, y = 0. It was left to Lagrange to clear up this matter.
Completing the theory left unfinished by Euler, in 1768 Lagrange published the
first rigorous proof that all solutions arise through the continued fraction expansion
of

√
d.
As a result of a mistaken reference, the central point of contention, the equation

x2 − dy2 = 1, has gone into the literature with the title “Pell’s equation.” The erro-
neous attribution of its solution to the English mathematician John Pell (1611–1685),
who had little to do with the problem, was an oversight on Euler’s part. On a cur-
sory reading of Wallis’s Opera Mathematica (1693), in which Brouncker’s method
of solving the equation is set forth as well as information as to Pell’s work on
Diophantine analysis, Euler must have confused their contributions. By all rights we
should call the equation x2 − dy2 = 1 “Fermat’s equation,” for he was the first to
deal with it systematically. Although the historical error has long been recognized,
Pell’s name is the one that is indelibly attached to the equation.

Whatever the integral value of d, the equation x2 − dy2 = 1 is satisfied trivially
by x = ±1, y = 0. If d < −1, then x2 − dy2 ≥ 1 (except when x = y = 0) so that
these exhaust the solutions; when d = −1, two more solutions occur, namely, x = 0,
y = ±1. The case in which d is a perfect square is easily dismissed. For if d = n2

for some n, then x2 − dy2 = 1 can be written in the form

(x + ny)(x − ny) = 1

which is possible if and only if x + ny = x − ny = ±1; it follows that

x = (x + ny) + (x − ny)

2
= ±1

and the equation has no solutions apart from the trivial ones x = ±1, y = 0.
From now on, we shall restrict our investigation of the Pell equation x2 − dy2 = 1

to the only interesting situation, that where d is a positive integer that is not a square.
Let us say that a solution x , y of this equation is a positive solution provided both x
and y are positive. Because solutions beyond those with y = 0 can be arranged in
sets of four by combinations of signs ±x , ±y, it is clear that all solutions will be
known once all positive solutions have been found. For this reason, we seek only
positive solutions of x2 − dy2 = 1.

The result that provides us with a starting point asserts that any pair of posi-
tive integers satisfying Pell’s equation can be obtained from the continued fraction
representing the irrational number

√
d.

Theorem 15.12. If p, q is a positive solution of x2 − dy2 = 1, then p/q is a convergent
of the continued fraction expansion of

√
d.

Proof. In light of the hypothesis that p2 − dq2 = 1, we have

(p − q
√

d)(p + q
√

d) = 1
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implying that p > q as well as that

p

q
−

√
d = 1

q(p + q
√

d)

As a result,

0 <
p

q
−

√
d <

√
d

q(q
√

d + q
√

d)
=

√
d

2q2
√

d
= 1

2q2

A direct appeal to Theorem 15.9 indicates that p/q must be a convergent of
√

d.

In general, the converse of the preceding theorem is false: not all of the con-
vergents pn/qn of

√
d supply solutions to x2 − dy2 = 1. Nonetheless, we can say

something about the size of the values taken on by the sequence p2
n − dq2

n .

Theorem 15.13. If p/q is a convergent of the continued fraction expansion of
√

d,
then x = p, y = q is a solution of one of the equations

x2 − dy2 = k

where | k | < 1 + 2
√

d .

Proof. If p/q is a convergent of
√

d, then the corollary to Theorem 15.7 guarantees
that ∣∣∣∣

√
d − p

q

∣∣∣∣ <
1

q2

and therefore

| p − q
√

d | <
1

q

This being so, we have

| p + q
√

d | = | (p − q
√

d) + 2q
√

d |
≤ | p − q

√
d | + | 2q

√
d |

<
1

q
+ 2q

√
d ≤ (1 + 2

√
d)q

These two inequalities combine to yield

| p2 − dq2 | = | p − q
√

d | | p + q
√

d |

<
1

q
(1 + 2

√
d)q

= 1 + 2
√

d

which is precisely what was to be proved.
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In illustration, let us take the case of d = 7. Using the continued fraction ex-
pansion

√
7 = [2; 1, 1, 1, 4], the first few convergents of

√
7 are determined to be

2/1, 3/1, 5/2, 8/3, . . .

Running through the calculations of p2
n − 7q2

n , we find that

22 − 7 · 12 = −3 32 − 7 · 12 = 2 52 − 7 · 22 = −3 82 − 7 · 32 = 1

whence x = 8, y = 3 provides a positive solution of the equation x2 − 7y2 = 1.
Although a rather elaborate study can be made of periodic continued fractions,

it is not our intention to explore this area at any length. The reader may have noticed
already that in the examples considered so far, all the continued fraction expansions
of

√
d took the form

√
d = [a0; a1, a2, . . . , an ]

that is, the periodic part starts after one term, this initial term being [
√

d]. It is also
true that the last term an of the period is always equal to 2a0 and that the period,
with the last term excluded, is symmetrical (the symmetrical part may or may not
have a middle term). This is typical of the general situation. Without entering into
the details of the proof, let us simply record the fact: if d is a positive integer that
is not a perfect square, then the continued fraction expansion of

√
d necessarily has

the form

√
d = [a0; a1, a2, a3, . . . , a3, a2, a1, 2a0]

In the case in which d = 19, for instance, the expansion is

√
19 = [4; 2, 1, 3, 1, 2, 8]

whereas d = 73 gives

√
73 = [8; 1, 1, 5, 5, 1, 1, 16]

Among all d < 100, the longest period is that of
√

94, which has 16 terms:

√
94 = [9; 1, 2, 3, 1, 1, 5, 1, 8, 1, 5, 1, 1, 3, 2, 1, 18]
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The following is a list of the continued fraction expansions of
√

d, where d is a
nonsquare integer between 2 and 40:

√
2 = [1; 2]

√
22 = [4; 1, 2, 4, 2, 1, 8]√

3 = [1; 1, 2]
√

23 = [4; 1, 3, 1, 8]√
5 = [2; 4]

√
24 = [4; 1, 8]√

6 = [2; 2, 4]
√

26 = [5; 10]√
7 = [2; 1, 1, 1, 4]

√
27 = [5; 5, 10]√

8 = [2; 1, 4]
√

28 = [5; 3, 2, 3, 10]√
10 = [3; 6]

√
29 = [5; 2, 1, 1, 2, 10]√

11 = [3; 3, 6]
√

30 = [5; 2, 10]√
12 = [3; 2, 6]

√
31 = [5; 1, 1, 3, 5, 3, 1, 1, 10]√

13 = [3; 1, 1, 1, 1, 6]
√

32 = [5; 1, 1, 1, 10]√
14 = [3; 1, 2, 1, 6]

√
33 = [5; 1, 2, 1, 10]√

15 = [3; 1, 6]
√

34 = [5; 1, 4, 1, 10]√
17 = [4; 8]

√
35 = [5; 1, 10]√

18 = [4; 4, 8]
√

37 = [6; 12]√
19 = [4; 2, 1, 3, 1, 2, 8]

√
38 = [6; 6, 12]√

20 = [4; 2, 8]
√

39 = [6; 4, 12]√
21 = [4; 1, 1, 2, 1, 1, 8]

√
40 = [6; 3, 12]

Theorem 15.12 indicates that if the equation x2 − dy2 = 1 possesses a solution,
then its positive solutions are to be found among x = pk , y = qk , where pk/qk

are the convergents
√

d. The period of the continued fraction expansion of
√

d
provides the information we need to show that x2 − dy2 = 1 actually does have a
solution in integers; in fact, there are infinitely many solutions, all obtainable from
the convergents of

√
d.

An essential result in our program is that if n is the length of the period of the
continued fraction expansion for

√
d, then the convergent pkn−1/qkn−1 satisfies

p2
kn−1 − dq2

kn−1 = (−1)kn k = 1, 2, 3, . . .

Before establishing this, we should recall that the expansion
√

d = [ao; a1, a2, . . .]
was obtained by first defining

x0 =
√

d and xk+1 = 1

xk − [xk]
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for k = 0, 1, 2, . . . , and then setting ak = [xk] when k ≥ 0. Thus, the xk are all
irrational numbers, the ak are integers and these are related by the expression

xk+1 = 1

xk − ak
k ≥ 0

Another preliminary is the following somewhat technical lemma.

Lemma. Given the continued fraction expansion
√

d = [a0; a1, a2, . . .], define sk and
tk recursively by the relations

s0 = 0 t0 = 1

sk+1 = aktk − sk tk+1 = d − s2
k+1

tk
k = 0, 1, 2, . . .

Then

(a) sk and tk are integers, with tk �= 0.
(b) tk |(d − s2

k ).
(c) xk = (sk + √

d)/tk for k ≥ 0.

Proof. We proceed by induction on k, noting that the three assertions clearly hold when
k = 0. Assume they are true for a fixed positive integer k. Because ak, sk , and tk are
all integers, sk+1 = aktk − sk will likewise be an integer. Also, tk+1 �= 0, for otherwise
d = s2

k+1, contrary to the supposition that d is not a square. The equation

tk+1 = d − s2
k+1

tk
= d − s2

k

tk
+ (2aksk − a2

k tk)

where tk |(d − s2
k ) by the induction hypothesis, implies that tk+1 is an integer; whereas

tk tk+1 = d − s2
k+1 gives tk+1|(d − s2

k+1). Finally, we obtain

xk+1 = 1

xk − ak
= tk

(sk + √
d) − tkak

= tk√
d − sk+1

= tk(sk+1 + √
d)

d − s2
k+1

= sk+1 + √
d

tk+1

and so (a), (b), and (c) hold in the case of k + 1, hence for all positive integers.

We need one more collateral result before turning to the solutions of Pell’s
equation. Here we tie the convergents of

√
d to the integers of tk of the lemma.

Theorem 15.14. If pk/qk are the convergents of the continued fraction expansion of√
d then

p2
k − dq2

k = (−1)k+1tk+1 where tk+1 > 0 k = 0, 1, 2, 3, . . .
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Proof. For
√

d = [a0; a1, a2 . . . , ak, xk+1], we know that
√

d = xk+1 pk + pk−1

xk+1qk + qk−1

Upon substituting xk+1 = (sk+1 + √
d)/tk+1 and simplifying, this reduces to

√
d(sk+1qk + tk+1qk−1 − pk) = sk+1 pk + tk+1 pk−1 − dqk

Because the right-hand side is rational and
√

d is irrational, this last equation requires
that

sk+1qk + tk+1qk−1 = pk and sk+1 pk + tk+1 pk−1 = dqk

The effect of multiplying the first of these relations by pk and the second by −qk , and
then adding the results, is

p2
k − dq2

k = tk+1(pkqk−1 − pk−1qk)

But Theorem 15.3 tells us that

pkqk−1 − pk−1qk = (−1)k−1 = (−1)k+1

and so

p2
k − dq2

k = (−1)k+1tk+1

Let us next recall from the discussion of convergents that

C2k <
√

d < C2k+1 k ≥ 0

Because Ck = pk/qk , we deduce that p2
k − dq2

k < 0 for k even and p2
k − dq2

k > 0 for
k odd. Thus, the left-hand side of the equation

p2
k − dq2

k

p2
k−1 − dq2

k−1

= − tk+1

tk
k ≥ 1

is always negative, which makes tk+1/tk positive. Starting with t1 = d − a2
0 > 0, we

climb up the quotients to arrive at tk+1 > 0.

A matter of immediate concern is determining when the integer t j = 1. We settle
this question below.

Corollary. If n is the length of the period of the expansion of
√

d, then

t j = 1 if and only if n| j

Proof. For
√

d = [a0; a1, a2, . . . , an ], we have

xkn+1 = x1 k = 0, 1, . . .

Hence,

skn+1 + √
d

tkn+1
= s1 + √

d

t1
or √

d(tkn+1 − t1) = skn+1t1 − s1tkn+1
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The irrationality of
√

d implies that

tkn+1 = t1 skn+1 = s1

But then

t1 = d − s2
1 = d − s2

kn+1 = tkntkn+1 = tknt1

and so tkn = 1. The net result of this is that t j = 1 whenever n| j .
Going in the other direction, let j be a positive integer for which t j = 1. Then

x j = s j + √
d and, on taking integral parts, we can write

[x j ] = s j + [
√

d] = s j + a0

The definition of x j+1 now yields

x j = [x j ] + 1

x j+1
= s j + a0 + 1

x j+1

Putting the pieces together

a0 + 1

x1
= x0 =

√
d = x j − s j = a0 + 1

x j+1

therefore, x j+1 = x1. This means that the block a1, a2, . . . , a j of j integers keeps
repeating in the expansion of

√
d . Consequently, j must be a multiple of the length n

of the period.

For a brief illustration, let us take the continued fraction expansion
√

15 =
[3; 1, 6]. Its period is of length 2 and the first four convergents are

3/1, 4/1, 27/7, 31/8

A calculation shows that

32 − 15 · 12 = 272 − 15 · 72 = −6

42 − 15 · 12 = 312 − 15 · 82 = 1

Hence, t1 = t3 = 6 and t2 = t4 = 1.
We are finally able to describe all the positive solutions of the Pell equation

x2 − dy2 = 1, where d > 0 is a nonsquare integer. Our result is stated as

Theorem 15.15. Let pk/qk be the convergents of the continued fraction expansion of√
d and let n be the length of the expansion.

(a) If n is even, then all positive solutions of x2 − dy2 = 1 are given by

x = pkn−1 y = qkn−1 k = 1, 2, 3, . . .

(b) If n is odd, then all positive solutions of x2 − dy2 = 1 are given by

x = p2kn−1 y = q2kn−1 k = 1, 2, 3, . . .
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Proof. It has already been established in Theorem 15.12 that any solution x0, y0 of
x2 − dy2 = 1 is of the form x0 = p j , y0 = q j for some convergent p j/q j of

√
d. By

the previous theorem,

p2
j − dq2

j = (−1) j+1t j+1

which implies that j + 1 is an even integer and t j+1 = 1. The corollary tells us that
n|( j + 1), say j + 1 = nk for some k. If n is odd, then k must be even, whereas if n is
even then any value of k suffices.

Example 15.8. As a first application of Theorem 15.15, let us again consider the
equation x2 − 7y2 = 1. Because

√
7 = [2; 1, 1, 1, 4], the initial 12 convergents are

2/1, 3/1, 5/2, 8/3, 37/14, 45/17, 82/31, 127/48,

590/223, 717/271, 1307/494, 2024/765

Because the continued fraction representation of
√

7 has a period of length 4, the
numerator and denominator of any of the convergents p4k−1/q4k−1 form a solution of
x2 − 7y2 = 1. Thus, for instance,

p3

q3
= 8/3

p7

q7
= 127/48

p11

q11
= 2024/765

give rise to the first three positive solutions; these solutions are x1 = 8, y1 = 3;
x2 = 127, y2 = 48; x3 = 2024, y3 = 765.

Example 15.9. To find the solution of x2 − 13y2 = 1 in the smallest positive integers,
we note that

√
13 = [3; 1, 1, 1, 1, 6] and that there is a period of length 5. The first 10

convergents of
√

13 are

3/1, 4/1, 7/2, 11/3, 18/5, 119/33, 137/38, 256/71, 393/109, 649/180

With reference to part (b) of Theorem 15.15, the least positive solution of x2 −13y2 = 1
is obtained from the convergent p9/q9 = 649/180, the solution itself being x1 = 649,
y1 = 180.

There is a quick way to generate other solutions from a single solution of Pell’s
equation. Before discussing this, let us define the fundamental solution of the equa-
tion x2 − dy2 = 1 to be its smallest positive solution. That is, it is the positive
solution x0, y0 with the property that x0 < x ′, y0 < y′ for any other positive solu-
tion x ′, y′. Theorem 15.15 furnishes the following fact: If the length of the period
of the continued fraction expansion of

√
d is n, then the fundamental solution of

x2 − dy2 = 1 is given by x = pn−1, y = qn−1 when n is even; and by x = p2n−1,
y = q2n−1 when n is odd. Thus, the equation x2 − dy2 = 1 can be solved in either
n or 2n steps.

Finding the fundamental solution can be a difficult task, because the numbers in
this solution can be unexpectedly large, even for comparatively small values of d. For
example, the innocent-looking equation x2 − 991y2 = 1 has the smallest positive
solution

x = 379516400906811930638014896080

y = 12055735790331359447442538767
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The situation is even worse with x2 − 1000099y2 = 1, where the smallest positive
integer x satisfying this equation has 1118 digits. Needless to say, everything depends
upon the continued fraction expansion of

√
d and, in the case of

√
1000099, the

period consists of 2174 terms.
It can also happen that the integers needed to solve x2 − dy2 = 1 are small for a

given value of d and very large for the succeeding value. A striking illustration of this
variation is provided by the equation x2 − 61y2 = 1, whose fundamental solution
is given by

x = 1766319049 y = 226153980

These numbers are enormous when compared with the case d = 60, where the
solution is x = 31, y = 4 or with d = 62, where the solution is x = 63, y = 8.

With the help of the fundamental solution—which can be found by means of
continued fractions or by successively substituting y = 1, 2, 3, . . . into the expres-
sion 1 + dy2 until it becomes a perfect square—we are able to construct all the
remaining positive solutions.

Theorem 15.16. Let x1, y1 be the fundamental solution of x2 − dy2 = 1. Then every
pair of integers xn , yn defined by the condition

xn + yn

√
d = (x1 + y1

√
d)n n = 1, 2, 3, . . .

is also a positive solution.

Proof. It is a modest exercise for the reader to check that

xn − yn

√
d = (x1 − y1

√
d)n

Further, because x1 and y1 are positive, xn and yn are both positive integers. Bearing
in mind that x1, y1 is a solution of x2 − dy2 = 1, we obtain

x2
n − dy2

n = (xn + yn

√
d)(xn − yn

√
d)

= (x1 + y1

√
d)n(x1 − y1

√
d)n

= (x2
1 − dy2

1 )n = 1n = 1

and therefore xn , yn is a solution.

Let us pause for a moment to look at an example. By inspection, it is seen that
x1 = 6, y1 = 1 forms the fundamental solution of x2 − 35y2 = 1. A second positive
solution x2, y2 can be obtained from the formula

x2 + y2

√
35 = (6 +

√
35)2 = 71 + 12

√
35

which implies that x2 = 71, y2 = 12. These integers satisfy the equation
x2 − 35y2 = 1, because

712 − 35 · 122 = 5041 − 5040 = 1
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A third positive solution arises from

x3 + y3

√
35 = (6 + √

35)3

= (71 + 12
√

35)(6 + √
35) = 846 + 143

√
35

This gives x3 = 846, y3 = 143, and in fact,

8462 − 35 · 1432 = 715716 − 715715 = 1

so that these values provide another solution.
Returning to the equation x2 − dy2 = 1, our final theorem tells us that any

positive solution can be calculated from the formula

xn + yn

√
d = (x1 + y1

√
d)n

where n takes on integral values; that is, if u, v is a positive solution of x2 − dy2 = 1,
then u = xn , v = yn for a suitably chosen integer n. We state this as Theorem 15.17.

Theorem 15.17. If x1, y1 is the fundamental solution of x2 − dy2 = 1, then every
positive solution of the equation is given by xn , yn , where xn and yn are the integers
determined from

xn + yn

√
d = (x1 + y1

√
d)n n = 1, 2, 3, . . .

Proof. In anticipation of a contradiction, let us suppose that there exists a positive
solution u, v that is not obtainable by the formula (x1 + y1

√
d)n . Because x1+y1

√
d>1,

the powers of x1 + y1

√
d become arbitrarily large; this means that u + v

√
d must lie

between two consecutive powers of x1 + y1

√
d, say,

(x1 + y1

√
d)n < u + v

√
d < (x1 + y1

√
d)n+1

or, to phrase it in different terms,

xn + yn

√
d < u + v

√
d < (xn + yn

√
d)(x1 + y1

√
d)

On multiplying this inequality by the positive number xn − yn

√
d and noting that

x2
n − dy2

n = 1, we are led to

1 < (xn − yn

√
d)(u + v

√
d) < x1 + y1

√
d

Next define the integers r and s by r + s
√

d = (xn − yn

√
d)(u + v

√
d); that is, let

r = xnu − ynvd s = xnv − ynu

An easy calculation reveals that

r2 − ds2 = (
x2

n − dy2
n

)
(u2 − dv2) = 1

and therefore r , s is a solution of x2 − dy2 = 1 satisfying

1 < r + s
√

d < x1 + y1

√
d

Completion of the proof requires us to show that the pair r , s is a positive solution.
Because 1 < r + s

√
d and (r + s

√
d)(r − s

√
d) = 1, we find that 0 < r − s

√
d < 1.

In consequence,

2r = (r + s
√

d) + (r − s
√

d) > 1 + 0 > 0

2s
√

d = (r + s
√

d) − (r − s
√

d) > 1 − 1 = 0
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which makes both r and s positive. The upshot is that because x1, y1 is the fundamental
solution of x2 − dy2 = 1, we must have x1 < r and y1 < s; but then x1 + y1

√
d <

r + s
√

d, violating an earlier inequality. This contradiction ends our argument.

Pell’s equation has attracted mathematicians throughout the ages. There is his-
torical evidence that methods for solving the equation were known to the Greeks
some 400 years before the beginning of the Christian era. A famous problem of
indeterminate analysis known as the “cattle problem” is contained in an epigram
sent by Archimedes to Eratosthenes as a challenge to Alexandrian scholars. In it,
one is required to find the number of bulls and cows of each of four colors, the eight
unknown quantities being connected by nine conditions. These conditions ultimately
involve the solution of the Pell equation

x2 − 4729494y2 = 1

which leads to enormous numbers; one of the eight unknown quantities is a figure
having 206,545 digits (assuming that 15 printed digits take up one inch of space, the
number would be over 1/5 of a mile long). Although it is generally agreed that the
problem originated with the celebrated mathematician of Syracuse, no one contends
that Archimedes actually carried through all the necessary computations.

Such equations and dogmatic rules, without any proof for calculating their so-
lutions, spread to India more than a thousand years before they appeared in Europe.
In the 7th century, Brahmagupta said that a person who can within a year solve
the equation x2 − 92y2 = 1 is a mathematician; for those days, he would at least
have to be a good arithmetician, because x = 151, y = 120 is the smallest positive
solution. A computationally more difficult task would be to find integers satisfy-
ing x2 − 94y2 = 1, for here the fundamental solution is given by x = 2143295,
y = 221064.

Fermat, therefore, was not the first to propose solving the equation x2 − dy2 = 1
or even to devise a general method of solution. He was perhaps the first to assert
that the equation has an infinitude of solutions whatever the value of the nonsquare
integer d. Moreover, his effort to elicit purely integral solutions to both this and
other problems was a watershed in number theory, breaking away as it did from the
classical tradition of Diophantus’s Arithmetica.

PROBLEMS 15.5

1. If x0, y0 is a positive solution of the equation x2 − dy2 = 1, prove that x0 > y0.
2. By the technique of successively substituting y = 1, 2, 3, . . . into dy2 + 1, determine the

smallest positive solution of x2 − dy2 = 1 when d is
(a) 7.
(b) 11.
(c) 18.
(d) 30.
(e) 39.
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3. Find all positive solutions of the following equations for which y < 250:
(a) x2 − 2y2 = 1.
(b) x2 − 3y2 = 1.
(c) x2 − 5y2 = 1.

4. Show that there is an infinitude of even integers n with the property that both n + 1 and
n/2 + 1 are perfect squares. Exhibit two such integers.

5. Indicate two positive solutions of each of the equations below:
(a) x2 − 23y2 = 1.
(b) x2 − 26y2 = 1.
(c) x2 − 33y2 = 1.

6. Find the fundamental solutions of these equations:
(a) x2 − 29y2 = 1.
(b) x2 − 41y2 = 1.
(c) x2 − 74y2 = 1.

[Hint:
√

41 = [6; 2, 2, 12] and
√

74 = [8; 1, 1, 1, 1, 16].]
7. Exhibit a solution of each of the following equations:

(a) x2 − 13y2 = −1.
(b) x2 − 29y2 = −1.
(c) x2 − 41y2 = −1.

8. Establish that if x0, y0 is a solution of the equation x2 − dy2 = −1, then x = 2dy2
0 − 1,

y = 2x0 y0 satisfies x2 − dy2 = 1. Brouncker used this fact in solving x2 − 313y2 = 1.
9. If d is divisible by a prime p ≡ 3 (mod 4), show that the equation x2 − dy2 = −1 has

no solution.
10. If x1, y1 is the fundamental solution of x2 − dy2 = 1 and

xn + yn

√
d = (x1 + y1

√
d)n n = 1, 2, 3, . . .

prove that the pair of integers xn , yn can be calculated from the formulas

xn = 1

2
[(x1 + y1

√
d)n + (x1 − y1

√
d)n]

yn = 1

2
√

d
[(x1 + y1

√
d)n − (x1 − y1

√
d)n]

11. Verify that the integers xn , yn in the previous problem can be defined inductively either
by

xn+1 = x1xn + dy1 yn

yn+1 = x1 yn + xn y1

for n = 1, 2, 3, . . . , or by

xn+1 = 2x1xn − xn−1

yn+1 = 2x1 yn − yn−1

for n = 2, 3, . . . .

12. Using the information that x1 = 15, y1 = 2 is the fundamental solution of x2 − 56y2 = 1,
determine two more positive solutions.

13. (a) Prove that whenever the equation x2 − dy2 = c is solvable, it has infinitely many
solutions.
[Hint: If u, v satisfy x2 − dy2 = c and r , s satisfy x2 − dy2 = 1, then

(ur ± dvs)2 − d(us ± vr )2 = (u2 − dv2)(r2 − ds2) = c.]
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(b) Given that x = 16, y = 6 is a solution of x2 − 7y2 = 4, obtain two other positive
solutions.

(c) Given that x = 18, y = 3 is a solution of x2 − 35y2 = 9, obtain two other positive
solutions.

14. Apply the theory of this section to confirm that there exist infinitely many primitive
Pythagorean triples x , y, z in which x and y are consecutive integers.
[Hint: Note the identity (s2 − t2) − 2st = (s − t)2 − 2t2.]

15. The Pell numbers pn and qn are defined by

p0 = 0 p1 = 1 pn = 2pn−1 + pn−2 n ≥ 2

q0 = 1 q1 = 1 qn = 2qn−1 + qn−2 n ≥ 2

This gives us the two sequences

0, 1, 2, 5, 12, 29, 70, 169, 408, . . .

1, 1, 3, 7, 17, 41, 99, 239, 577, . . .

If α = 1 + √
2 and β = 1 − √

2, show that the Pell numbers can be expressed as

pn = αn − βn

2
√

2
qn = αn + βn

2

for n ≥ 0.
[Hint: Mimic the argument on page 296, noting that α and β are roots of the equation
x2 − 2x − 1 = 0.]

16. For the Pell numbers, derive the relations below, where n ≥ 1:
(a) p2n = 2pnqn .
(b) pn + pn−1 = qn .
(c) 2q2

n − q2n = (−1)n .
(d) pn + pn+1 + pn+3 = 3pn+2.
(e) q2

n − 2p2
n = (−1)n ; hence, qn/pn are the convergents of

√
2.
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CHAPTER

16
SOME MODERN DEVELOPMENTS

As with everything else, so with a mathematical theory: beauty can be
perceived, but not explained.

ARTHUR CAYLEY

16.1 HARDY, DICKSON, AND ERDÖS

The vitality of any field of mathematics is maintained only as long as its practitioners
continue to ask (and to find answers to) interesting and worthwhile questions. Thus
far, our study of number theory has shown how that process has worked from its
classical beginnings to the present day. The reader has acquired a working knowledge
of how number theory is developed and has seen that the field is still very much alive
and growing. This brief closing chapter indicates several of the more promising
directions that growth has taken in the 20th century.

We begin by looking at some contributions of three prominent number the-
orists from the past century, each from a different country: Godfrey H. Hardy,
Leonard E. Dickson, and Paul Erdös. In considerably advancing our mathemati-
cal knowledge, they are worthy successors to the great masters of the past.

For more than a quarter of a century, G. H. Hardy (1877–1947) dominated En-
glish mathematics through both the significance of his work and the force of his
personality. Hardy entered Cambridge University in 1896 and joined its faculty in
1906 as a lecturer in mathematics, a position he continued to hold until 1919. Per-
haps his greatest service to mathematics in this early period was his well-known
book A Course in Pure Mathematics. England had had a great tradition in applied
mathematics, starting with Newton, but in 1900, pure mathematics was at a low

353
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Godfrey Harold Hardy
(1877–1947)

(Trinity College Library, Cambridge)

ebb there. A Course in Pure Mathematics was designed to give the undergraduate
student a rigorous exposition of the basic ideas of analysis. Running through nu-
merous editions and translated into several languages, it transformed the trend of
university teaching in mathematics.

Hardy’s antiwar stand excited strong negative feelings at Cambridge, and in
1919, he was only too ready to accept the Savilian chair in geometry at Oxford. He
was succeeded on the Cambridge staff by John E. Littlewood. Eleven years later,
Hardy returned to Cambridge, where he remained until his retirement in 1942.

Hardy’s name is inevitably linked with that of Littlewood, with whom he carried
on the most prolonged (35 years), extensive, and fruitful partnership in the history of
mathematics. They wrote nearly 100 papers together, the last appearing a year after
Hardy’s death. It was often joked that there were only three great English mathemati-
cians in those days: Hardy, Littlewood, and Hardy-Littlewood. (One mathematician,
upon meeting Littlewood for the first time, exclaimed, “I thought that you were
merely a name used by Hardy for those papers which he did not think were quite
good enough to publish under his own name.”)

There are very few areas of number theory to which Hardy did not make a
significant contribution. A major interest of his was Waring’s problem; that is, the
question of representing an arbitrary positive integer as the sum of at most g(k)
kth powers (see Section 13.3). The general theorem that g(k) is finite for all k was
first proved by Hilbert in 1909 using an argument that shed no light on how many
kth powers are needed. In a series of papers published during the 1920s, Hardy
and Littlewood obtained upper bounds on G(k), defined to be the least number
of kth powers required to represent all sufficiently large integers. They showed
(1921) that G(k) ≤ (k − 2)2k−1 + 5 for all k, and, more particularly, that G(4) ≤ 19,
G(5) ≤ 41, G(6) ≤ 87, and G(7) ≤ 193. Another of their results (1925) is that for
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“almost all” positive integers g(4) ≤ 15, whereas g(k) ≤ (1/2 k − 1)2k−1 + 3 when
k = 3 or k ≥ 5. Because 79 = 4 · 24 + 15 · 14 requires 19 fourth powers, g(4) ≥ 19;
this, together with the bound G(4) ≤ 19 suggested that g(4) = 19 and raised the
possibility that its actual value could be settled by computation.

Another topic that drew the attention of the two collaborators was the classical
three-primes problem: Can every odd integer n ≥ 7 be written as the sum of three
prime numbers? In 1922, Hardy and Littlewood proved that if certain hypotheses are
made, then there exists a positive number N such that every odd integer n ≥ N is a
sum of three primes. They also found an approximate formula for the number of such
representations of n. I. M. Vinogradov later obtained the Hardy-Littlewood conclu-
sion without invoking their hypotheses. All the Hardy-Littlewood papers stimulated
a vast amount of further research by many mathematicians.

L. E. Dickson (1874–1954) was prominent among a small circle of those who
greatly influenced the rapid development of American mathematics at the turn of
the century. He received the first doctorate in mathematics from the newly founded
University of Chicago in 1896, became an assistant professor there in 1900, and
remained at Chicago until his retirement in 1939.

Reflecting the abstract interests of his thesis advisor, the distinguished E. H.
Moore, Dickson initially pursued the study of finite groups. By 1906, Dickson’s
prodigious output had already reached 126 papers. He would jokingly remark that,
although his honeymoon was a success, he managed to get only two research arti-
cles written then. His monumental History of the Theory of Numbers (1919), which
appeared in three volumes totaling more than 1600 pages, took 9 years to complete;
by itself this would have been a life’s work for an ordinary man. One of the century’s
most prolific mathematicians, Dickson wrote 267 papers and 18 books covering a
broad range of topics in his field. An enduring bit of legend is his barb against appli-
cable mathematics: “Thank God that number theory is unsullied by applications.”
(Expressing much the same view, Hardy is reported to have made the toast: “Here’s to
pure mathematics! May it never have any use.”) In recognition of his work, Dickson
was the first recipient of the F. N. Cole Prize in algebra and number theory, awarded
in 1928 by the American Mathematical Society.

Dickson stated that he always wished to work in number theory, and that he wrote
the History of the Theory of Numbers so he could know all that had been done on the
subject. He was particularly interested in the existence of perfect numbers, abundant
and deficient numbers, and Waring’s problem. A typical result of his investigations
was to list (in 1914) all the odd abundant numbers less than 15,000.

In a long series of papers beginning in 1927, Dickson gave an almost complete
solution of the original form of Waring’s problem. His final result (in 1936) was
that, for nearly all k, g(k) assumes the ideal value g(k) = 2k + [(3/2)k] − 2, as was
conjectured by Euler in 1772. Dickson obtained a simple arithmetic condition on k
for ensuring that the foregoing formula for g(k) held, and showed that the condition
was satisfied for k between 7 and 400. With the dramatic increase in computer
power, it is now known that Euler’s conjecture for g(k) holds when k is between 2
and 471600000.

Paul Erdös (1913–1996), who is often described as one of the greatest modern
mathematicians, is unique in mathematical folklore. The son of two high school
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teachers of mathematics, his genius became apparent at a very early age. Erdös
entered the University of Budapest when he was 17 and graduated 4 years later with
a Ph.D. in mathematics. As a first year student in college, he published his first paper,
which was a simple proof of Bertrand’s conjecture that for any n > 1 there is always
a prime between n and 2n.

After a 4-year fellowship at Manchester University, England, Erdös adopted the
lifestyle of a wandering scholar, a “Professor of the Universe.” He traveled the world
constantly, often visiting as many as 15 universities and research centers in a month.
(Where Gauss’s motto was “Few, but ripe,” Erdös took as his the words “Another
roof, another proof.”) Although Erdös never held a regular academic appointment, he
had standing offers at several institutions where he could pause for short periods. In
his total dedication to mathematical research, Erdös dispensed with the pleasures and
possessions of daily life. He had neither property nor fixed address, carried no money
and never cooked anything, not even boiled water for tea; a few close friends handled
his financial affairs, including filing his income tax returns. A generous person, Erdös
was apt to give away the small honoraria he picked up from his lectures, or used them
to fund two scholarships that he set up for young mathematicians—one in Hungary
and one in Israel.

Erdös’s work in number theory was always substantial and frequently monu-
mental. One feat was his demonstration (1938) that the sum of the reciprocals of
the prime numbers is a divergent series. In 1949, he and Atle Selberg independently
published “elementary”—though not easy—proofs of what is called the Prime Num-
ber Theorem. (It asserts that π (x) ≈ x/ log x , where π (x) is the number of primes
p ≤ x .) This veritable sensation among number theorists helped earn Selberg a Fields
Medal (1950) and Erdös a Cole Prize (1952). Erdös received the prestigious Wolf
Prize in 1983 for outstanding achievement in mathematics; of the $50,000 award,
he retained only $750 for himself.

Erdös published, either alone or jointly, more than 1200 papers. With over 300
coauthors, he collaborated with more people than any other mathematician. As a spur
to his collaborators, Erdös attached monetary rewards to problems that he had been
unable to solve. The rewards generally ranged from $10 to $10,000, depending on his
assessment of the difficulty of the problem. The inducement to obtain a solution was
not as much financial as prestigious, for there was a certain notoriety associated with
owning a check bearing Erdös’s name. The following reflect the range of questions
that he would have liked to have seen answered:

1. Does there exist an odd integer that is not of the form 2k + n, with n square-free?

2. Are there infinitely many primes p (such as p = 101) for which p − k! is com-
posite whenever 1 ≤ k! < p?

3. Is it true that, for all k > 8, 2k cannot be written as the sum of distinct powers of
3? [Note that 28 = 35 + 32 + 3 + 1.]

4. If p(n) is the largest prime factor of n, does the inequality p(n) > p(n + 1) >

p(n + 2) have an infinite number of solutions?

5. Given an infinite sequence of integers, the sum of whose reciprocals diverges, does
the sequence contain arbitrarily long arithmetic progressions? ($3,000 offered for
an answer)
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Through a host of problems and conjectures such as these, Paul Erdös stimulated
two generations of number theorists.

A word about a current trend: computation has always been an important inves-
tigative tool in number theory. Therefore, it is not surprising that number theorists
were among the first mathematicians to exploit the research potential of modern
electronic computers. The general availability of computing machinery has given
rise to a new branch of our discipline, called Computational Number Theory. Among
its wide spectrum of activities, this subject is concerned with testing the primality of
given integers, finding lower bounds for odd perfect numbers, discovering new pairs
of twin primes and amicable numbers, and obtaining numerical solutions to cer-
tain Diophantine equations (such as x2 + 999 = y3). Another fruitful line of work
is to verify special cases of conjectures, or to produce counterexamples to them;
for instance, in regard to the conjecture that there exist pseudoprimes of the form
2n − 2, a computer search found the pseudoprime 2465794 − 2. The problem of fac-
toring large composite numbers has been of continuing computational interest. The
most dramatic result of this kind was the recent determination of a prime factor
of the twenty-eighth Fermat number F28, an integer having over 8 million decimal
digits. Previously, it had been known only that F28 is composite. The extensive cal-
culations produced the 22-digit factor 25709319373 · 236 + 1. No doubt number-
theoretic records will continue to fall with the development of new algorithms and
equipment.

Number theory has many examples of conjectures that are plausible, are sup-
ported by seemingly overwhelming numerical evidence, and yet turn out to be false.
In these instances, a direct computer search of many cases can be of assistance.
One promising conjecture of long standing was due to George Pólya (1888–1985).
In 1914, he surmised that for any n ≥ 2, the number of positive integers up to n
having an odd number of prime divisors is never smaller than the number having
an even number of prime divisors. Let λ be the Liouville function, defined by the
equation λ(n) = (−1)�(n), where the symbol �(n) represents the total number of
prime factors of n ≥ 2 counted according to their multiplicity (λ(1) = 1). With this
notation, the Pólya conjecture may be written as a claim that the function

L(n) =
∑
x≤n

λ(x)

is never positive for any n ≥ 2. Pólya’s own calculations confirmed this up to n =
1500, and the conjecture was generally believed true for the next 40 years. In 1958,
C. B. Haselgrove proved the conjecture false by showing that infinitely many integers
n exist for which L(n) > 0. However, his method failed to furnish any specific n
for which the conjecture is violated. Shortly thereafter (1960), R. S. Lehman called
attention to the fact that

L(9906180359) = 1

The least value of n satisfying L(n) > 0 was discovered in 1980; it is 906150257.
Another question that could not have been settled without the aid of computers is

whether the string of digits 123456789 occurs somewhere in the decimal expansion
for π . In 1991, when the value of π extended beyond one billion decimal digits, it
was reported that the desired block appeared shortly after the half-billionth digit.
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16.2 PRIMALITY TESTING AND FACTORIZATION

In recent years, primality testing has become one of the most active areas of inves-
tigation in number theory. The dramatic improvements in power and sophistication
of computing equipment have rekindled interest in large-scale calculations, leading
to the development of new algorithms for quickly recognizing primes and factoring
composite integers; some of these procedures require so much computation that their
implementation would have been infeasible a generation ago. Such algorithms are
of importance to those in industry or government concerned with safeguarding the
transmission of data; for various present-day cryptosystems are based on the inherent
difficulty of factoring numbers with several hundred digits. This section describes a
few of the more recent innovations in integer factorization and primality testing. The
two computational problems really belong together, because to obtain a complete
factorization of an integer into a product of primes we must be able to guarantee—
or provide certainty beyond a reasonable doubt—that the factors involved in the
representation are indeed primes.

The problem of distinguishing prime numbers from composite numbers has
occupied mathematicians through the centuries. In his Disquisitiones Arithmeticae,
Gauss acclaimed it as “the most important and useful in arithmetic.” Given an integer
n > 1, just how does one go about testing it for primality? The oldest and most direct
method is trial division: check each integer from 2 up to

√
n to see whether any is

a factor of n. If one is found, then n is composite; if not, then we can be sure that
n is prime. The main disadvantage to this approach is that, even with a computer
capable of performing a million trial divisions every second, it may be so hopelessly
time-consuming as to be impractical. It is not enough simply to have an algorithm
for determining the prime or composite character of a reasonably large integer; what
we really need is an efficient algorithm.

The long-sought rapid test for determining whether a positive integer is prime
was devised in 2002 by three Indian computer scientists (M. Agrawal, N. Kayal,
and N. Saxena). Their surprisingly simple algorithm provides a definite answer in
“polynomial time,” that is, in about d6 steps where d is the number of binary digits
of the given integer.

In 1974, John Pollard proposed a method that is remarkably successful in finding
moderate-sized factors (up to about 20 digits) of formerly intractable numbers. Con-
sider a large odd integer n that is known to be composite. The first step in Pollard’s
factorization method is to choose a fairly simple polynomial of degree at least 2 with
integer coefficients, such as a quadratic polynomial

f (x) = x2 + a a �= 0, −2

Then, starting with some initial value x0, a “random” sequence x1, x2, x3, . . . is
created from the recursive relation

xk+1 ≡ f (xk) (mod n) k = 0, 1, 2, . . .

that is, the successive iterates x1 = f (x0), x2 = f ( f (x0)), x3 = f ( f ( f (x0))), . . . are
computed modulo n.
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Let d be a nontrivial divisor of n, where d is small compared with n. Because
there are relatively few congruence classes modulo d (namely, d of them), there will
probably exist integers x j and xk that lie in the same congruence class modulo d
but belong to different classes modulo n; in short, we will have xk ≡ x j (mod d),
and xk �≡ x j (mod n). Because d divides xk − x j and n does not, it follows that
gcd(xk − x j , n) is a nontrivial divisor of n. In practice, a divisor d of n is not known
in advance. But it can most likely be detected by keeping track of the integers xk ,
which we do know. Simply compare xk with earlier x j , calculating gcd(xk − x j , n)
until a nontrivial greatest common divisor occurs. The divisor obtained in this way
is not necessarily the smallest factor of n, and indeed it may not even be prime. The
possibility exists that when a greatest common divisor greater than 1 is found, it may
turn out to be equal to n itself; that is, xk ≡ x j (mod n). Although this happens only
rarely, one remedy is to repeat the computation with either a new value of x0 or a
different polynomial f (x).

A rather simple example is afforded by the integer n = 2189. If we choose
x0 = 1 and f (x) = x2 + 1, the recursive sequence will be

x1 = 2, x2 = 5, x3 = 26, x4 = 677, x5 = 829, . . .

Comparing different xk , we find that

gcd(x5 − x3, 2189) = gcd(803, 2189) = 11

and so a divisor of 2189 is 11.
As k increases, the task of computing gcd(xk − x j , n) for each j < k becomes

very time-consuming. We shall see that it is often more efficient to reduce the number
of steps by looking at cases in which k = 2 j . Let d be some (as yet undiscovered)
nontrivial divisor of n. If xk ≡ x j (mod d), with j < k, then by the manner in which
f (x) was selected

x j+1 = f (x j ) ≡ f (xk) = xk+1 (mod d)

It follows from this that, when the sequence {xk} is reduced modulo d, a block of
k − j integers is repeated infinitely often. That is, if r ≡ s (mod k − j), where r ≥ j
and s ≥ j , then xr ≡ xs (mod d); and, in particular, x2t ≡ xt (mod d) whenever t is
taken to be a multiple of k − j larger than j . It is reasonable therefore to expect that
there will exist an integer k for which 1 < gcd(x2k − xk, n) < n. The drawback in
computing only one greatest common divisor for each value of k is that we may not
detect the first time that gcd(xi − x j , n) is a nontrivial divisor of n.

A specific example will make matters come to life.

Example 16.1. To factor n = 30623 using this variant of Pollard’s method, let us take
x0 = 3 as the starting value and f (x) = x2 − 1 as the polynomial. The sequence of
integers that xk generates is

8, 63, 3968, 4801, 21104, 28526, 18319, 18926, . . .
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Making the comparison x2k with xk , we get

x2 − x1 = 63 − 8 = 55 gcd(55, n) = 1

x4 − x2 = 4801 − 63 = 4738 gcd(4738, n) = 1

x6 − x3 = 28526 − 3968 = 24558 gcd(24558, n) = 1

x8 − x4 = 18926 − 4801 = 14125 gcd(14125, n) = 113

The desired factorization is 30623 = 113 · 271.
When the xk are reduced modulo 113, the new sequence

8, 63, 13, 55, 86, 50, 13, 55, . . .

is obtained. This sequence is ultimately periodic with the four integers 13, 55, 86, 50
being repeated. It is also worth observing that because x8 ≡ x4 (mod 113), the length
of the period is 8 − 4 = 4. The situation can be represented pictorially as

x4 ≡ x8 ≡ 55 x 5 ≡ x9 ≡ 86

x6 ≡ x10 ≡ 50
x3 ≡ x7 ≡ 13

x2 = 63

x1 = 8

x0 = 3

Because the figure resembles the Greek letter ρ (rho), this factoring method is
popularly known as Pollard’s rho-method. Pollard himself had called it the Monte
Carlo method, in view of its random nature.

A notable triumph of the rho-method is the factorization of the Fermat number
F8 by Brent and Pollard in 1980. Previously F8 had been known to be composite, but
its factors were undetermined. Using f (x) = x210 + 1 and x0 = 3 in the algorithm,
Brent and Pollard were able to find the prime factor 1238926361552897 of F8 in
only 2 hours of computer time. Although they were unable to verify that the other
62-digit factor was prime, H. C. Williams managed the feat shortly thereafter.

Fermat’s theorem lies behind a second factorization scheme developed by
John Pollard in 1974, known as the p − 1 method. Suppose that the odd composite
integer n to be factored has an unknown prime divisor p with the property that
p − 1 is a product of relatively small primes. Let q be any integer such that
(p − 1) | q. For instance, q could be either k! or the least common multiple of the
first k positive integers, where k is taken sufficiently large. Next choose an integer
a, with 1 < a < p − 1, and calculate aq ≡ m (mod n). Because q = (p − 1) j for
some j , the Fermat congruence leads to

m ≡ aq ≡ (a p−1) j ≡ 1 j = 1 (mod p)

implying that p | (m − 1). This forces gcd(m − 1, n) > 1, which gives rise to a
nontrivial divisor of n as long as m �≡ 1 (mod n).



P1: BINAYA KUMAR DASH

bur83147_ch16_353_383 Burton DQ032A-Elementary-v2.cls December 14, 2009 15:10

SOME MODERN DEVELOPMENTS 361

It is important to note that gcd(m − 1, n) can be calculated without knowing p.
If it happens that gcd(m − 1, n) = 1, then one should go back and select a different
value of a. The method might also fail if q is not taken to be large enough; that is,
if p − 1 contains a large prime factor or a small prime occurring to a large power.

Example 16.2. Let us obtain a nontrivial divisor of n = 2987 by taking a = 2 and
q = 7! in Pollard’s p − 1 method. To find 27! (mod 2987), we compute

(((((22)3)4)5)6)7 (mod 2987)

the sequence of calculations being

22 ≡ 4 (mod 2987)

43 ≡ 64 (mod 2987)

644 ≡ 2224 (mod 2987)

22245 ≡ 1039 (mod 2987)

10396 ≡ 2227 (mod 2987)

22277 ≡ 755 (mod 2987)

Because gcd(754, 2987) = 29, we have discovered that 29 is a divisor of 2987.

The continued fraction factoring algorithm also played a prominent role during
the mid-1970s. This iterative procedure was contained in Legendre’s Théorie des
Nombres of 1798, but over the ensuing years fell into disuse owing to the drudgery of
its complicated calculations. With the advent of electronic computers, there was no
longer a practical reason for ignoring the method as the inhibiting computations could
now be done quickly and accurately. Its first impressive success was the factorization
of the 39-digit Fermat number F7, performed by Morrison and Brillhart in 1970 and
published in 1975.

Before considering this method, let us recall the notation of continued fractions.
For a nonsquare positive integer n, the continued fraction expansion of

√
n is

√
n = [a0; a1, a2, a3, . . .]

where the integers ak are defined recursively by

a0 = [x0], x0 = √
n

ak+1 = [xk+1], xk+1 = 1

xk − ak
for k ≥ 0

The kth convergent Ck of
√

n is

Ck = [a0; a1, a2, . . . , ak] = pk/qk

The pk and qk can be calculated from the relations

p−2 = q−1 = 0, p−1 = q−2 = 1

and

pk = ak pk−1 + pk−2

qk = akqk−1 + qk−2 for k ≥ 0
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Now the values a0, a1, a2, . . . are used to define integers sk and tk as follows:

s0 = 0, t0 = 1

sk+1 = aktk − sk, tk+1 = (
n − s2

k+1

)
/tk for k ≥ 0

The equation that we require appears in Theorem 15.12; namely,

p2
k−1 − nq2

k−1 = (−1)k tk (k ≥ 1)

or, expressed as congruence modulo n,

p2
k−1 ≡ (−1)k tk (mod n)

The success of this factorization method depends on tk being a perfect square for
some even integer k, say tk = y2. This would give us

p2
k−1 ≡ y2 (mod n)

and a chance at a factorization of n. If pk−1 �≡ ±y (mod n), then gcd(pk−1 + y, n)
and gcd(pk−1 − y, n) are nontrivial divisors of n; for n would divide the product of
pk−1 + y and pk−1 − y without dividing the factors. In the event that pk−1 ≡ ±y
(mod n), we locate another square tk and try again.

Example 16.3. Let us factor 3427 using the continued fraction factorization method.
Now

√
3427 has the continued fraction expansion

√
3427 = [58; 1, 1, 5, 1, 1, 1, 16, 12, . . .]

The results of calculating sk, tk, and pk are listed in tabular forms with some values of
pk reduced modulo 3427:

k 0 1 2 3 4 5 6 7 8
ak 58 1 1 5 1 1 1 16 12
sk 0 45 23 22 13 41 43 17 42
tk 1 63 54 19 69 42 73 7 9
pk 58 59 117 644 761 1405 2166 1791 3096

The first tk , with an even subscript, that is a square, is t8. Thus, we consider the
congruence

p2
7 ≡ (−1)8t8 (mod 3427)

which is to say the congruence

17912 ≡ 32 (mod 3427)

Here, it is determined that

gcd(1791 + 3, 3427) = gcd(1794, 3427) = 23

gcd(1791 − 3, 3427) = gcd(1788, 3427) = 149

and so both 23 and 149 are factors of 3247. Indeed, 3427 = 23 · 149.
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A square t2k does not necessarily lead to a nontrivial divisor of n. Take n = 1121,
for example. From

√
1121 = [33; 2, 12, 1, 8, 1, 1, . . .], we obtain the table of values

k 0 1 2 3 4 5 6

ak 33 2 12 1 8 1 1
sk 0 33 31 29 27 29 11
tk 1 32 5 56 7 40 25
pk 33 67 837 904 8069 8973 17042

Now t6 is a square. The associated congruence p2
5 ≡ (−1)6t6 (mod 1121)

becomes

89732 ≡ 52 (mod 1121)

But the method fails at this point to detect a nontrivial factor of 1121, for

gcd(8973 + 5, 1121) = gcd(8978, 1121) = 1

gcd(8973 − 5, 1121) = gcd(8968, 1121) = 1121

When the factoring algorithm has not produced a square t2k after having gone
through many values of k, there are ways to modify the procedure. One variation
is to find a set of tk’s whose product, with appropriate sign, is a square. Our next
example illustrates this technique.

Example 16.4. Consider the integer n = 2059. The table concerning the continued
fraction expansion of

√
2059 is

k 0 1 2 3 4 5 6 7 8

ak 45 2 1 1 1 12 2 1 17
sk 0 45 23 22 13 41 43 17 42
tk 1 34 45 35 54 7 30 59 5
pk 45 91 136 227 363 465 1293 1758 294

In search of promising tk , we notice that t2t8 = 45 · 5 = (3 · 5)2. The two associated
congruences are

p2
1 ≡ (−1)2t2 (mod 2059), p2

7 ≡ (−1)8t8 (mod 2059)

expressed otherwise,

912 ≡ 45 (mod 2059), 17582 ≡ 5 (mod 2059)

Multiplying these together yields

(91 · 1758)2 ≡ 152 (mod 2059)

or, reduced modulo 2059, 14352 ≡ 152 (mod 2059). This leads to

gcd(1435 + 15, 2059) = gcd(1450, 2059) = 29

and a divisor 29 of 2059. The complete factorization is 2059 = 29 · 71.
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Another modification of the algorithm is to factor n by looking at the conti-
nued fraction expansion of

√
mn, where m is often a prime or the product of the

first few primes. This amounts to searching for integers x and y where x2 ≡ y2

(mod mn) and then calculating gcd(x + y, mn) in the hope of producing a nontrivial
divisor of n.

As an example, let n = 713. Let us look at the integer 4278 = 6 · 713 with
expansion

√
4278 = [65; 2, 2, 5, 1, . . .]. A square t2k arises almost immediately

in the computations, since t2 = 49. Thus, we examine the congruence p2
1 ≡

(−1)2t2 (mod 4278), which is to say

1312 ≡ (−1)272 (mod 4278)

It is seen that

gcd(131 + 7, 4278) = gcd(138, 4278) = gcd(6 · 23, 6 · 713) = 23

which gives 23 as a factor of 713. Indeed, 713 = 23 · 31.
This approach is essentially the one taken by Morrison and Brillhart in their

landmark factorization of F7. From the first 1300000 of the tk’s occurring in the
expansion of

√
257F7, some 2059 of them were completely factored in order to find

a product that is a square.
Toward the end of the 20th century, the quadratic sieve algorithm was the method

of choice for factoring very large composite numbers—including the 129-digit RSA
Challenge Number. It systematized the factor scheme published by Kraitchik in
1926 (page 100). This earlier method was based on the observation that a composite
number n can be factored whenever integers x and y satisfying

x2 ≡ y2 (mod n) x �≡ ±y (mod n)

can be found; for then gcd(x − y, n) and gcd(x + y, n) are nontrivial divisors of n.
Kraitchik produced the pair x and y by searching for a set of congruences

x2
i ≡ yi (mod n) i = 1, 2, . . . , r

where the product of the yi is a perfect square. It would follow that

(x1x2 · · · xr )2 ≡ y1 y2 · · · yr = c2 (mod n)

giving a solution of the desired equation x2 ≡ y2 (mod n) and, quite possibly, a
factor of n. The drawback to this technique is that the determination of a promising
set of yi is a trial and error process.

In 1970, John Brillhart and Michael Morrison developed an efficient strategy for
identifying congruences x2

i ≡ yi (mod n) whose product yields a square. The first
step is the selection of a factor base {−1, p1, p2, . . . , pr } consisting of p1 = 2 and
small odd primes pi such that n is a quadratic residue of each pi ; that is, the value of
the Legendre symbol (n/pi ) = 1. Usually, the factor base consists of all such primes
up to some fixed bound. Next the quadratic polynomial

f (x) = x2 − n

is evaluated for integral x “near” [
√

n], the largest integer less than
√

n. More
explicitly, take x = [

√
n], ±1 + [

√
n], ±2 + [

√
n], . . . . The factor base is tailored
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to n so that each prime in it divides at least one value of f (x), with −1 included so
as to allow negative values of f (x).

We are interested only in those f (x) that factor completely within the primes of
the factor base, all other values being excluded.

If

f (x) = (−1)k0 pk1
1 pk2

2 · · · pkr
r k0 = 0 or 1 ki ≥ 0 for i = 1, 2, . . . , r

then the factorization can be stored in an (r + 1)-component exponent vector de-
fined by

v(x) = (k0, j1, j2, . . . , jr ) ji ≡ ki (mod 2) for i = 1, 2, . . . , r

The components of the vector are either 0 or 1, depending on whether the prime
pi occurs in f (x) to an even or an odd power. Notice that the exponent vector of
a product of f (x)’s is the sum of their respective exponent vectors modulo 2. As
soon as the number of exponent vectors found in this way exceeds the number of
elements of the factor base, a linear dependency will occur among the vectors—
although such a relation is often discovered earlier. In other words, there will exist
a subset x1, x2, . . . , xs for which

v(x1) + v(x2) + · · · + v(xs) ≡ (0, 0, · · · , 0) (mod 2)

This means that the product of the corresponding f (x) is a perfect square, say y2,
resulting in an expression of the form

(x1x2 · · · xs)2 ≡ f (x1) f (x2) · · · f (xs) ≡ y2 (mod n)

There is a reasonable chance that (x1x2 · · · xs) �≡ ±y (mod n), in which event
gcd(x1x2 · · · xs − y, n) is a nontrivial divisor of n. Otherwise, new linear depen-
dencies are searched for until n is factored.

Example 16.5. As an example of the quadratic sieve algorithm, let us take n = 9487.
Here [

√
n] = 97. The factor base selected is {−1, 2, 3, 7, 11, 13, 17, 19, 29} consisting

of −1 and the eight primes less than 30 for which 9487 is a quadratic residue. We exam-
ine the quadratic polynomial f (x) = x2 − 9487 for x = i + 97 (i = 0, ±1, . . . ,±16).
Those values of f (x) that factor completely into primes from the factor base are listed
in the table, along with the components of their exponent vectors.

x f(x) −1 2 3 7 11 13 17 19 29

81 −2926 = −2 · 7 · 11 · 19 1 1 0 1 1 0 0 1 0
84 −2431 = −11 · 13 · 17 1 0 0 0 1 1 1 0 0
85 −2262 = −2 · 3 · 13 · 29 1 1 1 0 0 1 0 0 1
89 −1566 = −2 · 33 · 29 1 1 1 0 0 0 0 0 1
95 −462 = −2 · 3 · 7 · 11 1 1 1 1 1 0 0 0 0
97 −78 = −2 · 3 · 13 1 1 1 0 0 1 0 0 0
98 117 = 32 · 13 0 0 0 0 0 1 0 0 0

100 513 = 33 · 19 0 0 1 0 0 0 0 1 0
101 714 = 2 · 3 · 7 · 17 0 1 1 1 0 0 1 0 0
103 1122 = 2 · 3 · 11 · 17 0 1 1 0 1 0 1 0 0
109 2394 = 2 · 32 · 7 · 19 0 1 0 1 0 0 0 1 0
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Our table indicates that the exponent vectors for f (85), f (89), and f (98) are
linearly dependent modulo 2; that is,

v(85) + v(89) + v(98) ≡ (0, 0, . . . , 0) (mod 2)

The congruences corresponding to these vectors are

f (85) ≡ 852 ≡ −2 · 3 · 13 · 29 (mod 9487)
f (89) ≡ 892 ≡ −2 · 33 · 29 (mod 9487)
f (98) ≡ 982 ≡ 32 · 13 (mod 9487)

which, when multiplied together, produce

(85 · 89 · 98)2 ≡ (2 · 33 · 13 · 29)2 (mod 9487)

or

7413702 ≡ 203582 (mod 9487)

Unfortunately, 741370 ≡ 20358 (mod 9487) and no nontrivial factorization of 9487
will be achieved.

A more fruitful choice is to employ the dependency relation

v(81) + v(95) + v(100) ≡ (0, 0, . . . , 0) (mod 2)

This will lead us to the congruence

(81 · 95 · 100)2 ≡ (2 · 32 · 7 · 11 · 19)2 (mod 9487)

or

7695002 ≡ 263342 (mod 9487)

Reducing the values modulo 9487, we arrive at

10532 ≡ 73602 (mod 9487)

with 1053 �≡ 7360 (mod 9487). Then

gcd(1053 + 7360, 9487) = gcd(8413, 9487) = 179

and 9487 is factored as 9487 = 179 · 53.

It is sometimes helpful to notice that once one value of x is found for which
the prime p divides f (x), then every pth value is also divisible by p; this occurs
because

f (x + kp) = (x + kp)2 − n ≡ x2 − n = f (x) (mod p)

for k = 0, ±1, ±2, . . . . The algorithm “sieves” the integers x much like the sieve of
Eratosthenes for locating multiples of p. In the last example, for instance 7 divides
f (81) as well as f (88), f (95), f (102), . . . . Obtaining values f (x) that factor over
the factor base can be done by performing this sieving process for each of the primes
in the base.

Fermat’s theorem provides a way of recognizing most composite numbers. Sup-
pose that the character of an odd integer n > 1 is to be determined. If a number a
can be found with 1 < a < n and an−1 �≡ 1 (mod n), then n is definitely composite.
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This is known as the Fermat test for nonprimality. It is quite efficient—provided
we know which a to choose—but has the shortcoming of giving no clue as to what
the factors of n might be. On the other hand, what happens if the Fermat congru-
ence an−1 ≡ 1 (mod n) holds? Here, it is “quite likely” that n is prime, although
we cannot be mathematically certain. The problem is that for a given value of a
there exist infinitely many composite numbers n for which an−1 ≡ 1 (mod n). These
numbers n are called pseudoprimes with respect to the base a. To give a feel for
their scarcity, note that below 1010 there are only 14882 pseudoprimes with respect
to base 2, compared with 455052511 primes. Worse yet, there exist n that are pseu-
doprime to every base, the so-called absolute pseudoprimes or Carmichael numbers.
They are an extremely rare sort of number, although there are infinitely many of
them.

By imposing further restrictions on the base a in Fermat’s congruence an−1 ≡ 1
(mod n), it is possible to obtain a definite guarantee of the primality of n. Typical
of the kind of result to be found is that known as Lucas’s Converse of Fermat’s
Theorem. It was first given by the French number theorist Edouard Lucas in 1876
and appears in his Théorie des Nombres (1891).

Theorem 16.1 Lucas. If there exists an integer a such that an−1 ≡ 1 (mod n) and
a(n−1)/p �≡ 1 (mod n) for all primes p dividing n − 1, then n is a prime.

Proof. Let a have order k modulo n. According to Theorem 8.1, the condition an−1 ≡ 1
(mod n) implies that k | n − 1; say, n − 1 = k j for some j . If j > 1, then j will have
a prime divisor q. Thus, there is an integer h satisfying j = qh. As a result,

a(n−1)/q = (ak)h ≡ 1h = 1 (mod n)

which contradicts our hypothesis. The implication of all this is that j = 1. But we
already know that the order of a does not exceed φ(n). Therefore, n − 1 = k ≤ φ(n) ≤
n − 1, so that φ(n) = n − 1, which goes to show that n − 1 is prime.

We illustrate the theorem in a specific instance.

Example 16.6. Let us take n = 997. Then, for the base a = 7, 7996 ≡ 1 (mod 997).
Because n − 1 = 996 = 22 · 3 · 83, we compute

7996/2 = 7498 ≡ −1 (mod 997)

7996/3 = 7332 ≡ 304 (mod 997)

7996/83 = 712 ≡ 9 (mod 997)

Taking Theorem 16.1 into account, 997 must be prime.

Theorem 16.1 was improved in the late 1960s so that it is no longer necessary
to find a single a for which all the hypotheses are satisfied. Instead, a suitable base
is allowed for each prime factor of n − 1. The result merits being singled out, which
we do as Theorem 16.2.

Theorem 16.2. If for each prime pi dividing n − 1 there exists an integer ai such that
an−1

i ≡ 1 (mod n) but a(n−1)/pi

i �≡ 1 (mod n), then n is prime.
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Proof. Suppose that n − 1 = pk1
1 pk2

2 · · · pkr
r , with the pi distinct primes. Also let hi be

the order of ai modulo n. The combination of hi | n − 1 and hi � | (n − 1)/pi implies
that pki

i | hi (the details are left to the reader). But for each i , we have hi | φ(n), and
therefore pki

i | φ(n). This gives n − 1 | φ(n), whence n is prime.

To provide an example, let us return to n = 997. Knowing the prime divisors of
n − 1 = 996 to be 2, 3, and 83, we find for the different bases 3, 5, and 7 that

3996/83 = 312 ≡ 40 (mod 997)

5996/2 = 5498 ≡ −1 (mod 997)

7996/3 = 7332 ≡ 304 (mod 997)

Using Theorem 16.2, we can conclude that 997 is a prime number.
There can be rather serious difficulties in implementing the last two theorems, for

they reduce the problem of proving the primality of n to that of finding the complete
factorization of its predecessor n − 1. In many cases it is no easier to factor n − 1
than it would have been to factor n. Moreover, a great many primes p may have to
be tried to show that the second part of the hypothesis is satisfied.

In 1914, Henry Pocklington showed that it is not necessary to know all the
prime divisors of n − 1. A primality investigation of n can be carried out as soon
as n − 1 is factored only up to the point where the size of its factored part exceeds
that of its unfactored part. However, some of the time saved is offset by the auxiliary
calculations needed to find certain greatest common divisors.

Theorem 16.3. Let n−1 = mj , where m = pk1
1 pk2

2 · · · pks
s , m≥√

n and gcd(m, j) = 1.
If for each prime pi (1 ≤ i ≤ s) there exists an integer ai with an−1

i ≡ 1 (mod n) and
gcd(a(n−1)/pi

i − 1, n) = 1, then n is prime.

Proof. Our argument is similar to that employed in Theorem 16.2. Let p be any
prime divisor of n and take hi to be the order of ai modulo p. Then hi | p − 1.
From the congruence an−1

i ≡ 1 (mod p), we also get hi | n − 1. Now the hypoth-
esis gcd(a(n−1)/pi

i − 1, n) = 1 indicates that a(n−1)/pi

i �≡ 1 (mod p), and therefore
hi � | (n − 1)/pi . We infer that pki

i | hi , which, in turn, leads us to pki
i | p − 1. Be-

cause this holds for each i , m | p − 1. We end up with the contradiction that any prime
divisor of n must be larger than m ≥ √

n, thereby making n a prime.

Comparing Theorem 16.3 with Theorem 16.2, we can see that the former the-
orem requires that, for each prime divisor p of n − 1, a(n−1)/p − 1 should not be
a multiple of n; whereas, the latter imposes the more stringent condition that this
quantity should be relatively prime to n, but for fewer values of p. The most striking
advantage of Theorem 16.3 over Theorem 16.2 is that it does not demand a complete
factorization, only a partial factorization that is large enough. The main drawback is
that we do not know in advance whether sufficiently many factors of n − 1 can be
obtained to have a successful test.

It might be illuminating to establish the primality of n = 997 once again, this
time using Pocklington’s theorem to provide the evidence. Again n − 1 = 996 =
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12 · 83, where 83 >
√

997. Thus, we need only select a suitable base for 83, say
a = 2. Now 2996 ≡ 1 (mod 997) and

gcd(2996/83 − 1, 997) = gcd(4095, 997) = 1

leading to the conclusion that 997 is prime.
Fermat’s theorem allows us to determine whether a large odd integer n > 1 is

composite without explicitly exhibiting a nontrivial divisor. There is another direct
test for compositeness, which is called the Miller-Rabin test. One selects a random
integer, uses it to perform this test, and announces that n is either definitely composite
or that its nature is still undecided. The algorithm may be described as follows: First
write n − 1 = 2hm, where m is odd. Next choose a number 1 < a < n − 1 and form,
modulo n, the sequence

am, a2m, a4m, . . . , a2h−1m, a2hm = an−1

in which each term is the square of its predecessor. Then n is said to pass the test for
this particular base a if the first occurrence of 1 either is the first term or is preceded
by −1.

The coming theorem indicates that an odd prime will pass the above test for
all such bases a. To reveal the compositeness of an odd integer, it is enough to find
a value of a for which the test fails. Any such a is said to be a witness for the
compositeness of n. For each odd composite n, at least three-fourths of the numbers
a with 1 < a < n − 1 will be witnesses for n.

Theorem 16.4. Let p be an odd prime and p − 1 = 2hm, with m odd and h ≥ 1. Then
any integer a (1 < a < p − 1) satisfies am ≡ 1 (mod p) or a2 j m ≡ −1 (mod p) for
some j = 1, 2, . . . , h − 1.

Proof. Assume that a has order k modulo p. By Theorem 8.1, k must divide p − 1 =
2hm. When k is odd, Euclid’s lemma tells us that k | m; say, m = kr for some integer
r . The result is that

am = (ak)r ≡ 1r = 1 (mod p)

Now, take k to be even. In this case it may be written as k = 2 j+1d, where j ≥ 0 and
d is an odd integer. The relation 2 j+1d | 2hm yields j + 1 ≤ h and d | m. Also, from
the congruence a2 j+1d ≡ 1 (mod p) we get a2 j d ≡ ±1 (mod p). Because a has order k,
a2 j d ≡ 1 (mod p) is not possible. In consequence, a2 j d ≡ −1 (mod p). Now m = dt
for an odd integer t . This leads immediately to

a2 j m = (a2 j d )t ≡ (−1)t = −1 (mod p)

which establishes the theorem.

Before continuing, let us use Theorem 16.4 to test n = 2201 for compositeness.
Now n − 1 = 23 · 275. Working modulo 2201, it turns out that

2275 ≡ 1582 2550 ≡ 187 21100 ≡ 1954 22200 ≡ 1582
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and hence 2201 fails the Miller-Rabin test for a = 2. Thus, 2201 is correctly asserted
to be composite, with 2 serving as a witness.

It should be emphasized that surviving the test for a single value of a does
not guarantee that n is prime. For example, if n = 2047 = 23 · 89, then n − 1 =
2 · 1023. Computing yields 21023 ≡ 1 (mod 2047), so that 2047 passes the test.

The Miller-Rabin test is often called a probabilistic primality test, because it
uses random input to detect most prime numbers. Suppose that we wish to decide
whether a given odd integer n is prime. Choose k integers a1, a2, . . . , ak indepen-
dently at random, with 0 < ai < n. If n fails the Miller-Rabin test for some one of
the ai , then n is immediately seen to be composite. Although passing the test for all
ai is no actual guarantee of the primality of n, it might well make us strongly suspect
that it is prime. In this situation, n is commonly described as being a probable prime
(something of a misnomer, because n is either a prime or it is not). It can be shown
that the probability of a composite integer surviving a series of k Miller-Rabin tests
is at most ( 1

4 )k . With reasonable confidence in the correctness of the answer, we are
able to declare that n is prime without any formal proof having been given. Modern
computers make taking k = 100 in the random base procedure perfectly realistic,
in which case the probability that n is actually prime is at least 1 − ( 1

4 )100.
One consequence of the Miller-Rabin test was the determination (1999) that the

repunit R49081 is a probable prime.

PROBLEMS 16.2

1. Use Pollard’s rho-method to factor the following integers:
(a) 299.
(b) 1003.
(c) 8051.

2. Find a nontrivial factor of 4087 by the rho-method employing the indicated x0 and f (x):
(a) x0 = 2, f (x) = x2 − 1.
(b) x0 = 3, f (x) = x2 + 1.
(c) x0 = 2, f (x) = x2 + x + 1.

3. By applying Pollard’s p − 1 method, obtain a factorization of
(a) 1711.
(b) 4847.
(c) 9943.

4. Use the continued fraction factorization algorithm to factor each of the following integers:
(a) 1241

[Hint:
√

1241 = [35; 4,2,1,1 . . .].]
(b) 2173
(c) 949

[Hint: The integer t1t3 is a square.]
(d) 7811

[Hint:
√

7811 = [88; 2,1,1,1,2,1,1,2 . . .] leads to t2t6 = 852.]
5. Factor 1189 by applying the continued fraction factorization algorithm to 7134 =

6 · 1189.
6. Use the quadratic sieve method to factor each of the following integers:

(a) 8131
[Hint: Take –1,2,3,5,7 as the factor base.]
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(b) 13199
[Hint: Use the factor base –1,2,5,7,13,29.]

(c) 17873
[Hint: Use the factor base –1,2,7,11,23.]

7. Use Lucas’s primality test to the base a to deduce that the integers below are prime:
(a) 907, a = 2.
(b) 1301, a = 2.
(c) 1709, a = 3.

8. Verify the primality of the following integers by means of Pocklington’s theorem:
(a) 917.
(b) 5023.
(c) 7057.

9. Show that Pocklington’s theorem leads to the following result of E. Proth (1878). Let
n = k · 2m + 1, where k is odd and 1 ≤ k < 2m ; if a(n−1)/2 ≡ −1 (mod n) for some
integer a, then n is prime.

10. Use Proth’s result to establish the primality of the following:
(a) 97 = 3 · 25 + 1.
(b) 449 = 7 · 26 + 1.
(c) 3329 = 13 · 28 + 1.

11. An odd composite integer that passes the Miller-Rabin test to the base a is said to be a
strong pseudoprime to the base a. Confirm the assertions below:
(a) The integer 2047 is not a strong pseudoprime to the base 3.
(b) 25 is a strong pseudoprime to the base 7.
(c) 65 is a strong pseudoprime to the base 8, and to the base 18.
(d) 341 is a pseudoprime, but not a strong pseudoprime to the base 2.

12. Establish that there are infinitely many strong pseudoprimes to the base 2.
[Hint: If n is a pseudoprime (base 2), show that Mn = 2n − 1 is a strong pseudoprime to
the base 2.]

13. For any composite Fermat number Fn = 22n + 1, prove that Fn is a strong pseudoprime
to the base 2.

16.3 AN APPLICATION TO FACTORING: REMOTE
COIN FLIPPING

Suppose that two people, Alice and Bob, wish to flip a fair coin while they are
conversing over the telephone. Each entertains a doubt: would the person flipping
the coin possibly cheat, by telling the party who calls the outcome that they are
wrong—no matter how the coin turns up? Without resorting to the services of trusted
witnesses, can a procedure be set up that cannot be biased by either Alice or Bob?

In 1982, Manuel Blum devised a number-theoretic scheme, a two-part protocol,
which meets the specifications of a coin toss: that is, the probability of correctly
guessing the outcome is 1/2. The game’s security against duplicity hinges on the
difficulty of factoring integers that are the products of two large primes of roughly
the same size.

At a certain stage in Blum’s game, one of the players is required to solve the
quadratic congruence x2 ≡ a (mod n). A solution is said to be a square root of
the integer a modulo n. When n = pq, with p and q distinct odd primes, there
are exactly four incongruent square roots of a modulo n. To see this, observe that
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x2 ≡ a (mod n) admits a solution if and only if the two congruences

x2 ≡ a (mod p) and x2 ≡ a (mod q)

are both solvable. The solutions of these two congruences—assuming they exist—
split into two pairs ±x1 (mod p) and ±x2 (mod q), which may be combined to form
four sets of simultaneous congruences:

x ≡ x1 (mod p)

x ≡ x2 (mod q)

x ≡ −x1 (mod p)

x ≡ −x2 (mod q)

x ≡ x1 (mod p)

x ≡ −x2 (mod q)

x ≡ −x1 (mod p)

x ≡ x2 (mod q)

We find four square roots of a modulo n when we solve these systems using the
Chinese Remainder Theorem. Before going any further, we pause for an example.

Example 16.7. Let us determine the solutions of the congruence

x2 ≡ 324 (mod 391)

where 391 = 17 · 23; in other words, find the four square roots of 324 modulo 391.
Now

x2 ≡ 324 ≡ 1 (mod 17) and x2 ≡ 324 ≡ 2 (mod 23)

have respective solutions

x ≡ ±1 (mod 17) and x ≡ ±5 (mod 23)

We therefore obtain four pairs of simultaneous linear congruences:

x ≡ 1 (mod 17)

x ≡ −5 (mod 23)

x ≡ −1 (mod 17)

x ≡ 5 (mod 23)

x ≡ 1 (mod 17)

x ≡ 5 (mod 23)

x ≡ −1 (mod 17)

x ≡ −5 (mod 23)
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The solutions of the first two pairs of congruences are x ≡ 18 (mod 391) and
x ≡ −18 (mod 391); the solutions of the last two pairs are x ≡ 120 (mod 391) and
x ≡ −120 (mod 391). Hence, the four square roots of 324 modulo 391 are x ≡ ±18,

±120 (mod 391) or, using positive integers,

x ≡ 18, 120, 271, 373 (mod 391)

We single out numbers of the form n = pq, where p ≡ q ≡ 3 (mod 4) are
distinct primes, by referring to them as Blum integers. For integers of this type, the
work of finding square roots modulo n (as indicated in Example 16.7) is simplified
by observing that the two solutions of x2 ≡ a (mod p) are given by

x ≡ ±a(p+1)/4 (mod p)
This is seen from

(±a(p+1)/4)2 ≡ a(p+1)/2 ≡ a(p−1)/2 · a ≡ 1 · a ≡ a (mod p)

with a(p−1)/2 ≡ 1 (mod p) by Euler’s criterion. Take, as a particular instance, the
congruence x2 ≡ 2 (mod 23). It admits the pair of solutions

±2(23+1)/4 ≡ ±26 ≡ ±64 ≡ ∓5 (mod 23)

With this brief detour behind us, let us return to Blum’s protocol for handling
long-distance coin flipping. It is assumed that each player has a telephone-linked
computer for carrying out computations during the game. The procedure is:

1. Alice begins by choosing two large primes p and q, both congruent to 3 modulo
4. She announces only their product n = pq to Bob.

2. Bob responds by randomly selecting an integer 0 < x < n with gcd(x, n) = 1.
He sends its square, a ≡ x2 (mod n), to Alice. (This corresponds to the coin
flip.)

3. Knowing p and q, Alice calculates the four square roots x, −x, y, −y of a
modulo n. She picks one of them to send to Bob. (That is, Alice calls the toss.)

4. If Bob receives ±x , he declares Alice to have guessed correctly. Otherwise, Bob
wins; for he is able to factor n. (A winner is announced.)

Notice that each of the parties knows a different secret during the course of the
game. The prime factors of n are Alice’s concealed information, and Bob’s personal
secret is his choice of the integer x . Alice has no way of knowing x , so that her
guess at ±x among the possible square roots of a is a real one, with a 50% chance
of success: she cannot do better than toss a coin to make her selection.

If Bob receives y or −y from Alice, then he possesses two different square roots
of a modulo n. He will be able to convince Alice that she has guessed incorrectly
by sending back to her the factors p and q of n. To do this, Bob simply needs to
calculate gcd(x ± y, n). The underlying idea is that the congruence

x2 ≡ a ≡ y2 (mod n) x �≡ ±y (mod n)
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leads to pq|(x + y)(x − y). This in turn implies that each prime divides either x + y
or x − y, although both cannot divide the same factor. Thus gcd(x + y, n) is either
p or q , and gcd(x − y, n) produces the other prime factor.

On the other hand, if Bob is sent either x or −x , then he has learned nothing
new and is unable to factor n in a reasonable length of time. His failure to do so is
an admission that Alice has won the game. After the game is over, she can assure
Bob that she used a Blum integer by providing its factors. Bob should check that the
disclosed factors are indeed primes.

We close with an example of Blum’s game using small prime numbers, although
modern-day computers allow primes with a hundred or more digits.

Example 16.8. Alice begins by choosing the primes p = 43 and q = 71 and telling
Bob their product, 3053 = 43 · 71. He responds by randomly selecting 192 as his secret
number; then Bob computes

1922 = 36864 ≡ 228 (mod 3053)

and sends back the value 228.
To obtain the four square roots of 228 modulo 3053, Alice first solves the quadratic

congruences

x2 ≡ 228 ≡ 13 (mod 43) and x2 ≡ 228 ≡ 15 (mod 71)

Because 43 ≡ 71 ≡ 3 (mod 4), their solutions turn out to be

x ≡ ±13(43+1)/4 ≡ ±1311 ≡ ∓20 (mod 43)

x ≡ ±15(71+1)/4 ≡ ±1518 ≡ ∓21 (mod 71)

respectively. Next Alice solves the four systems of linear congruences determined by
x ≡ ±20 (mod 43) and x ≡ ±21 (mod 71). From the Chinese Remainder Theorem,
she finds that x ≡ ±192 (mod 3053) or x ≡ ±1399 (mod 3053); expressed as positive
numbers,

x ≡ 192, 2861, 1399, 1654 (mod 3053)

Of these four numbers, two are equivalent modulo 3053 to Bob’s secret number
and the other two are not. Although Alice has an even chance of picking a “correct”
number, let us suppose that she makes a nonwinning choice by guessing at 1399. This
means that Bob has won the toss, but Alice prudently challenges him to prove it. So
Bob determines the factorization of 3053 by calculating.

gcd(192 + 1399, 3053) = gcd(1591, 3053) = 43

gcd(192 − 1399, 3053) = gcd(−1207, 3053) = 71

He sends these factors to Alice to confirm that she has chosen incorrectly.

PROBLEMS 16.3

1. Determine whether 12 has a square root modulo 85; that is, whether x2 ≡ 12 (mod 85) is
solvable.

2. Find the four incongruent solutions of each of the quadratic congruences below:
(a) x2 ≡ 15 (mod 77).
(b) x2 ≡ 100 (mod 209).
(c) x2 ≡ 58 (mod 69).
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3. Carry out the details of a long-distance coin toss in which Alice selects p = 23, q = 31
and Bob chooses x = 73.

4. For a coin toss over a phone line, Alice selects p = 47, q = 79 and Bob chooses x = 123.
Of the four numbers Alice then calculates, which two represent losing calls?

5. Here is another procedure for tossing coins electronically:
(a) Alice and Bob agree on a prime number p such that p − 1 contains at least one large

prime factor.
(b) Bob chooses two primitive roots r and s of p. He sends the two roots to Alice.
(c) Alice now picks an integer x , where gcd(x, p − 1) = 1. She returns to Bob one of the

values y ≡ r x (mod p) and y ≡ sx (mod p). (This corresponds to the coin toss.)
(d) Bob “calls the toss” by guessing whether r or s was used to calculate y.

Work through the details of a coin toss where p = 173, r = 2, s = 3, and x = 42.

16.4 THE PRIME NUMBER THEOREM AND ZETA FUNCTION

Although the sequence of prime numbers exhibits great irregularities of detail, a
trend is definitely apparent “in the large.” The celebrated Prime Number Theorem
allows us to predict, at least in gross terms, how many primes there are less than a
given number. It states that if the number is n, then there are about n divided by log n
(here, log n denotes the natural logarithm of n) primes before it. Thus, the Prime
Number Theorem tells us how the primes are distributed “in the large,” or “on the
average,” or “in a probability sense.”

One measure of the distribution of primes is the function π (x), which, for any
real number x , represents the number of primes that do not exceed x ; in symbols,
π (x) = ∑

p≤x 1. In Chapter 3, we proved that there are infinitely many primes,
which is simply an expression of the fact that limx→∞ π (x) = ∞. Going in the other
direction, it is clear that the prime numbers become on the average more widely
spaced in the higher parts of any table of primes; in informal terms, one might say
that almost all of the positive integers are composite.

By way of justifying our last assertion, let us show that the limit
limx→∞ π (x)/x = 0. Because π (x)/x ≥ 0 for all x > 0, the problem is reduced
to proving that π (x)/x can be made arbitrarily small by choosing x sufficiently
large. In more precise terms, what we shall prove is that if ε > 0 is any number, then
there must exist some positive integer N such that π (x)/x < ε whenever x ≥ N .

To start, let n be a positive integer and use Bertrand’s conjecture to pick a
prime p with 2n−1 < p ≤ 2n . Then p|(2n)!, but p � | (2n−1)!, so that the binomial
coefficient ( 2n

2n−1 ) is divisible by p. This leads to the inequalities

22n ≥
(

2n

2n−1

)
≥

∏
2n−1<p≤2n

p ≥ (2n−1)π (2n )−π (2n−1)

and, upon taking the exponents of 2 on each side, the subsequent inequality

π (2n) − π (2n−1) ≤ 2n

n − 1
(1)
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If we successively set n = 2k, 2k − 1, 2k − 2, . . . , 3 in inequality (1) and add
the resulting inequalities, we get

π (22k) − π (22) ≤
2k∑

r=3

2r

r − 1

But π (22) < 22 trivially, so that

π (22k) <

2k∑
r=2

2r

r − 1
=

k∑
r=2

2r

r − 1
+

2k∑
r=k+1

2r

r − 1

In the last two sums, let us replace the denominators r − 1 by 1 and k, respectively,
to arrive at

π (22k) <

k∑
r=2

2r +
2k∑

r=k+1

2r

k
< 2k+1 + 22k+1

k

Because k < 2k , we have 2k+1 < 22k+1/k for k ≥ 2, and therefore

π (22k) < 2

(
22k+1

k

)
= 4

(
22k

k

)

which can be written as

π (22k)

22k
<

4

k
(2)

With this inequality available, our argument proceeds rapidly to its conclusion. Given
any real number x > 4, there exists a unique integer k satisfying 22k−2 < x ≤ 22k .
From inequality (2), it follows that

π (x)

x
<

π (22k)

x
<

π (22k)

22k−2
= 4

(
π (22k)

22k

)
<

16

k

If we now take x ≥ N = 22([16/ε]+1), then k ≥ [16/ε] + 1; hence,

π (x)

x
<

16

([16/ε] + 1)
< ε

as desired.
A well-known conjecture of Hardy and Littlewood, dating from 1923, is that

π (x + y) ≤ π (x) + π (y)

for all integers x , y with 2 ≤ y ≤ x . Written as π (x + y) − π (y) ≤ π (x), the in-
equality asserts that no interval y < k ≤ x + y of length x can contain as many
prime numbers as there are in the interval 0 < k ≤ x . Although the conjecture has
been checked for x + y ≤ 100000, it appears likely that there will be exceptions
which, even though rare, will prove the conjecture false. The computations simply
have not gone far enough to produce the first counterexample. Curiously, there is no
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counterexample when x = y, because it has been shown (1975) that the inequality
π (2x) < 2π (x) holds for all x ≥ 11.

It was Euler (probably about 1740) who introduced into analysis the zeta function

ζ (s) =
∞∑

n=1

1

ns
= 1−s + 2−s + 3−s + · · ·

the function on whose properties the proof of the Prime Number Theorem ultimately
depended. Euler’s fundamental contribution to the subject is the formula representing
ζ (s) as a convergent infinite product; namely,

ζ (s) =
∏

p

(
1 − 1

ps

)−1

s > 1

where p runs through all primes. Its importance arises from the fact that it asserts
equality of two expressions of which one contains the primes explicitly and the other
does not. Euler considered ζ (s) as a function of a real variable only, but his formula
nonetheless indicates the existence of a deep-lying connection between the theory
of primes and the analytic properties of the zeta function.

Euler’s expression for ζ (s) results from expanding each of the factors in the
right-hand member as

1

1 − 1/ps
= 1 + 1

ps
+

(
1

ps

)2

+
(

1

ps

)3

+ · · ·

and observing that their product is the sum of all terms of the form

1(
pk1

1 pk2
2 · · · pkr

r
)s

where p1, . . . , pr are distinct primes. Because every positive integer n can be written
uniquely as a product of prime powers, each term 1/ns appears once and only once
in this sum; that is, the sum simply is

∑∞
n=1 1/ns .

It turns out that Euler’s formula for the zeta function leads to a deceptively short
proof of the infinitude of primes: the occurrence of a finite product on the right-hand
side would contradict the fact that lims→1 ζ (s) = ∞.

A problem that continues to attract interest concerns the value of ζ (n) when n>1
is an integer. Euler showed during the 1730s that ζ (2n) is a rational multiple of π2n ,
which makes it an irrational number:

ζ (2) = π2/6, ζ (4) = π4/90, ζ (6) = π6/945, ζ (8) = π8/9450, . . .

The question remains unsettled for odd integers. Only in 1978 did the French mathe-
matician Roger Apéry establish that ζ (3) is irrational; although the proof was hailed
as “miraculous and magnificent” when it first appeared, it did not extend in any
obvious way to ζ (2n + 1) for n > 1. However, in 2000 it was proved that infinitely
many such values are irrational.

The values of ζ (2n) can be expressed in terms of the so-called Bernoulli num-
bers Bn , named for James Bernoulli (1654–1705). Today these are usually defined
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inductively by taking B0 = 1 and, for n ≥ 1,

(n + 1)Bn = −
n−1∑
k=O

(
n + 1

k

)
Bk

A little calculation shows that the first few Bn are

B0 = 1 B1 = −1/2
B2 = 1/6 B3 = 0
B4 = −1/30 B5 = 0
B6 = 1/42 B7 = 0
B8 = −1/30 B9 = 0

For instance,

5B4 = B0 − 5B1 − 10B2 − 10B3

so that B4 = −1/30.
The Bernoulli numbers B2n+1 beyond the first are all equal to zero, while all of

the B2n are rational numbers, which, after the first, alternate in sign. In 1734, Euler
calculated their values up to

B30 = 8615841276005

14322

Shortly thereafter he derived the remarkable formula

ζ (2n) = (−1)n+1(2π )2n B2n

(2n)!
, n ≥ 1

Legendre was the first to make any significant conjecture about functions that
give a good approximation to π (x) for large values of x . In his book Essai sur la
Théorie des Nombres (1798), Legendre ventured that π (x) is approximately equal
to the function

x

log x − 1.08366

By compiling extensive tables on how the primes distribute themselves in blocks of
one thousand consecutive integers, Gauss reached the conclusion that π (x) increases
at roughly the same rate as each of the functions x/ log x and

Li(x) =
∫ x

2

du

log u

with the logarithmic integral Li(x) providing a much closer numerical approxima-
tion. Gauss’s observations were communicated in a letter to the noted astronomer
Johann Encke in 1849, and first published in 1863, but appear to have begun as
early as 1791 when Gauss was 14 years old—well before Legendre’s treatise was
written.
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It is interesting to compare these remarks with the evidence of the tables:

x π(x)

x

log x − 1.08366

x

log x Li(x)

π(x)

(x/ log x)

1000 168 172 145 178 1.159
10,000 1,229 1,231 1086 1246 1.132
100,000 9,592 9,588 8,686 9,630 1.104
1,000,000 78,498 78,543 72,382 78,628 1.084
10,000,000 664,579 665,140 620,420 664,918 1.071
100,000,000 5,761,455 5,768,004 5,428,681 5,762,209 1.061

The first demonstrable progress toward comparing π (x) with x/ log x was made
by the Russian mathematician P. L. Tchebycheff. In 1850, he proved that there exist
positive constants a and b, a < 1 < b, such that

a

(
x

log x

)
< π (x) < b

(
x

log x

)

for sufficiently large x . Tchebycheff also showed that if the quotient π (x)/(x/ log x)
has a limit as x increases, then its value must be 1. Tchebycheff’s work, fine as it
is, is a record of failure: what he could not establish is that the foregoing limit does
in fact exist, and, because he failed to do this, he failed to prove the Prime Number
Theorem. It was not until some 45 years later that the final gap was filled.

We might observe at this point that Tchebycheff’s result implies that the series∑
p 1/p, extended over all primes, diverges. To see this, let pn be the nth prime, so

that π (pn) = n. Because we have

π (x) > a

(
x

log x

)

for sufficiently large x , it follows that the inequality

n = π (pn) > a

(
pn

log pn

)
>

√
pn

holds if n is taken sufficiently large. But n2 > pn leads to log pn < 2 log n, and
therefore we get

apn < n log pn < 2n log n

when n is large. In consequence, the series
∑∞

n=1 1/pn will diverge in comparison
with the known divergent series

∑∞
n=2(1/n log n).

A result similar to the previous one holds for primes in arithmetic progressions.
We know that if gcd(a, b) = 1, then there are infinitely many primes of the form
p = an + b. Dirichlet proved that the sum of 1/p, taken over such primes, diverges.
For instance, it applies to 4n + 1 primes:∑

p=4n+1

1

p
= 1

5
+ 1

13
+ 1

17
+ 1

29
+ 1

37
+ · · ·

is a divergent series.
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A dramatic change takes place when the primes are allowed to run over just
the twin primes. In 1919, the Norwegian mathematician Viggo Brun showed that
the series formed by the reciprocals of the twin primes converges. The twin primes
(even if there are infinitely many of them) are “sufficiently scarce” in the sequence
of all primes to cause convergence.

The sum

B =
(

1

3
+ 1

5

)
+

(
1

5
+ 1

7

)
+

(
1

11
+ 1

13

)
+ · · ·

which is called Brun’s constant, is estimated to be 1.9021604 ± 5 · 10−7. Notice that
the prime 5 appears in the two twin pairs 3,5 and 5,7; no other prime number enjoys
this property.

Let π2(x) denote the number of twin primes not exceeding x ; that is, the number
of primes p for which p + 2 ≤ x is also a prime. A famous conjecture (1923) of
Hardy and Littlewood is that π2(x) increases much like the function

L2(x) = 2C
∫ x

2

du

(log u)2

where C = 0.661618158. . . is known as the twin-prime constant. The next table
gives some idea how closely π2 is approximated by L2(x).

The radically new ideas that were to furnish the key to a proof of the Prime Num-
ber Theorem were introduced by Bernhard Riemann in his epoch-making memoir
Über die Anzahl der Primzahlen unter einer gegebenen Grösse of 1859 (his only
paper on the theory of numbers). Where Euler had restricted the zeta function ζ (s)
to real values of s, Riemann recognized the connection between the distribution of
primes and the behavior of ζ (s) as a function of a complex variable s = a + bi . He
enunciated a number of properties of the zeta function, together with a remarkable
identity, known as Riemann’s explicit formula, relating π (x) to the zeros of ζ (s) in
the s-plane. The result has caught the imagination of most mathematicians because it
is so unexpected, connecting two seemingly unrelated areas in mathematics; namely,
number theory, which is the study of the discrete, and complex analysis, which deals
with continuous processes.

x π2(x) L2(x) − π2(x)

103 35 11
104 205 9
105 1,224 25
106 8,169 79
107 58,980 −226
108 440,312 56
109 3,424,506 802
1010 27,412,679 −1262
1011 224,376,048 −7183

In his memoir, Riemann made a number of conjectures concerning the distri-
bution of the zeros of the zeta function. The most famous is the so-called Riemann
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hypothesis, which asserts that all the nonreal zeros of ζ (s) are at points 1
2 + bi

of the complex plane; that is, they lie on the “critical line” Re(s) = 1
2 . In 1914,

G. H. Hardy provided the first concrete result by proving that there are infinitely
many zeros of ζ (s) on the critical line. A series of large computations has been
made, culminating in the recent verification that the Riemann hypothesis holds for
all of the first (1.5)1010 zeros, an effort that involved over a thousand hours on
a modern supercomputer. This famous conjecture has never been proved or dis-
proved, and it is undoubtedly the most important unsolved problem in mathematics
today.

Riemann’s investigations were exploited by Jacques Hadamard and Charles
de la Vallée Poussin who, in 1896, independently of each other and almost
simultaneously, succeeded in proving that

lim
x→∞

π (x)

x/ log x
= 1

The result expressed in this formula has since become known as the Prime Number
Theorem. De la Vallée Poussin went considerably further in his research. He showed
that, for sufficiently large values of x , π (x) is more accurately represented by the
logarithmic integral Li(x) than by the function

x

log x − A

no matter what value is assigned to the constant A, and that the most favorable
choice of A in Legendre’s function is 1. This is at variance with Legendre’s original
contention that A = 1.08366, but his estimate (based on tables extending only as
far as x = 400000) had long been recognized as having little more than historical
interest.

Today, a good deal more is known about the relationship between π (x) and
Li(x). We shall only mention a theorem of Littlewood to the effect that the difference
π (x) − Li(x) assumes both positive and negative values infinitely often as x runs
over all positive integers. Littlewood’s result is a pure “existence theorem” and no
numerical value for x for which π (x) − Li(x) is positive has ever been found. It is
a curious fact that an upper bound on the size of the first x satisfying π (x) > Li(x)
is available; such an x must occur someplace before

eee79 ≈ 10101034

a number of incomprehensible magnitude. Hardy contended that it was the largest
number that ever had a practical purpose. This upper limit, obtained by S. Skewes in
1933, has gone into the literature under the name of the Skewes number. Somewhat
later (1955), Skewes decreased the top exponent in his number from 34 to 3. In 1997,
this bound was reduced considerably when it was proved that there are more than
10311 successive integers x in the vicinity of (1.398) 10316 for which π (x) > Li(x).
However, an explicit numerical value of x is still beyond the reach of any computer.
What is perhaps remarkable is that π (x) < Li(x) for all x at which π (x) has been
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calculated exactly, that is, for all x in the range x < 2 · 1018. Some values are given
in the table:

x π(x) Li(x) − π(x)

109 50,847,534 1701
1010 455,052,511 3104
1011 4,118,054,813 11,588
1012 37,607,912,018 38,263
1013 346,065,536,839 108,971
1014 3,204,941,750,802 314,890
1015 29,844,570,422,669 1,052,619
1016 279,238,341,033,925 3,214,632
1017 2,623,557,157,654,233 7,956,589
1018 24,739,954,287,740,860 21,949,555

Although this table gives the impression that Li(x) − π (x) is always positive and
gets larger as x increases, negative values will eventually overwhelm the positive
ones.

A useful sidelight to the Prime Number Theorem deserves our attention; to wit,

lim
n→∞

n log n

pn
= 1

For, starting with the relation

lim
x→∞

π (x) log x

x
= 1

we may take logarithms and use the fact that the logarithmic function is continuous
to obtain

lim
x→∞[log π (x) + log(log x) − log x] = 0

or equivalently,

lim
x→∞

log π (x)

log x
= 1 − lim

x→∞
log(log x)

log x

But limx→∞ log(log x)/ log x = 0, which leads to

lim
x→∞

log π (x)

log x
= 1

We then get

1 = lim
x→∞

π (x) log x

x

= lim
x→∞

π (x) log π (x)

x
· log x

log π (x)

= lim
x→∞

π (x) log π (x)

x
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Setting x = pn , so that π (pn) = n, the result

lim
n→∞

n log n

pn
= 1

follows. This may be interpreted as asserting that if there are n primes in an interval,
then the length of the interval is roughly n log n.

Until recent times, the opinion prevailed that the Prime Number Theorem could
not be proved without the help of the properties of the zeta function and without
recourse to complex function theory. It came as a great surprise when in 1949 the
Norwegian mathematician Atle Selberg discovered a purely arithmetical proof. His
paper An Elementary Proof of the Prime Number Theorem is “elementary” in the
technical sense of avoiding the methods of modern analysis; indeed, its content is
exceedingly difficult. Selberg was awarded a Fields Medal at the 1950 International
Congress of Mathematicians for his work in this area. The Fields Medal is considered
to be the equivalent in mathematics of a Nobel Prize. (The thought that mathematics
should be included in his areas of recognition seems never to have occurred to Alfred
Nobel.) Presented every 4 years to a person under 40, the medal is the mathematical
community’s most distinguished award.

It will be another million years, at least, before we understand the primes.
Paul Erdös
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MISCELLANEOUS PROBLEMS

The positive integers stand there, a continual and inevitable challenge to the
curiosity of every healthy mind.
G. H. HARDY

1. Use induction to establish the following:

(a) 1 · 2 · 3 + 2 · 3 · 4 + · · · + n(n + 1)(n + 2) = n(n + 1)(n + 2)(n + 3)

4
.

(b)
1

1 · 5
+ 1

5 · 9
+ · · · 1

(4n − 3)(4n + 1)
= n

4n + 1
.

(c) 1 + 1√
2

+ 1√
3

+ · · · + 1√
n

≥ √
n.

2. Prove that

n3

3
− n2

2
+ n

6

is an integer for n ≥ 1.
3. If n ≥ 1, establish the divisibility assertions below:

(a) 7 | 23n+1 + 43n+1 + 1.
(b) 133 | 11n+2 + 122n+1.
(c) 11 | 35n + 45n+2 + 55n+1.

4. Verify that gcd(n! + 1, (n + 1)! + 1) = 1.
5. For all n ≥ 1, prove that 8 · 22n + 1 is composite.
6. Find all primes p for which 29p + 1 is a perfect square.
7. If n2 + 2 is prime, show that 3 | n.
8. Show that if p > 3 and q = p + 2 are twin primes, then pq ≡ −1 (mod 9).
9. Prove the following:

(a) If 7 | a3 + b3 + c3, then 7 | a or 7 | b or 7 | c.
(b) 9 | (n − 1)3 + n3 + (n + 1)3 for all n ≥ 1.

10. For positive integers n and m, establish that 3n + 3m + 1 is never a perfect square.
[Hint: Work modulo 8.]

11. Find the smallest positive value of n for which
(a) Equation 301x + 77y = 2000 + n has a solution.
(b) Equation 5x + 7y = n has exactly three positive solutions.

384
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12. For n ≥ 1, let 2n and 2n+1 be written in decimal form. If N is the number formed by
placing these decimal representations side by side, show that 3 | N . For example, when
n = 6, we have 3 | 64128 and 3 | 12864.

13. For what digits X is 242628X91715131 divisible by 3?
14. Find the last digit of 19991999 and the last two digits of 34321.
15. The three children in a family have feet that are 5, 7, and 9 inches long. Each child

measures the length of the dining room in their housing using their feet, and each finds
that there are 3 inches left over. How long is the dining room?

16. In the sequence of triangular numbers, suppose that

tn(tn−1 + tn+1) = tk

Determine k as a function of n.
17. Prove that a repunit prime Rn cannot be expressed as the sum of two squares.
18. Find the remainder when 70!/18 is divided by 71.
19. State and prove the general result illustrated by

42 = 16 342 = 1156 3342 = 111556 33342 = 11115556, . . .

20. If p is a prime, show that p | (τ (p)φ(p) + 2) and p | (τ (p)σ (p) − 2).
21. Establish the formula

∑
d | n μ(d)2ω(n/d) = | μ(n) |.

22. Prove that n is an even integer if and only if
∑

d | n φ(d)μ(d) = 0.
23. If τ (n) is divisible by an odd prime, show that μ(n) = 0.
24. Determine whether 97 divides n2 − 85 for some choice of n ≥ 1.
25. Find all integers n that satisfy the equation

(n − 1)3 + n3 + (n + 1)3 = (n + 2)3

[Hint: Work with the equation obtained by replacing n by k + 4.]
26. Prove that the Fermat numbers are such that

Fn + Fn+1 ≡ 1 (mod 7)

27. Verify that 6 is the only square-free even perfect number.
28. Given any four consecutive positive integers, show that at least one cannot be written as

the sum of two squares.
29. Prove that the terms of the Lucas sequence satisfy the congruence

2n Ln ≡ 2 (mod 10)

30. Show that infinitely many Fibonacci numbers are divisible by 5, but no Lucas numbers
have this property.

31. For the Fibonacci numbers, establish that 18 divides

un+11 + un+7 + 8un+5 + un+3 + 2un n ≥ 1

32. Prove that there exist infinitely many positive integers n such that n and 3n − 2 are per-
fect squares.

33. If n ≡ 5 (mod 10), show that 11 divides the sum

12n + 9n + 8n + 6n

34. Establish the following:
(a) 7 divides no number of the form 2n + 1, n ≥ 0.
(b) 7 divides infinitely many numbers of the form 10n + 3, n ≥ 0.

35. For n ≡ ±4 (mod 9), show that the equation n = a3 + b3 + c3 has no integer solution.
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36. Prove that if the odd prime p divides a2 + b2, where gcd(a, b) = 1, then p = 1 (mod 4).
37. Find an integer n for which the product 9999 · n is a repunit.

[Hint: Work with the equation 9999 · n = R4k .]
38. Verify that 10 is the only triangular number that can be written as the sum of two

consecutive odd squares.
39. Determine whether there exists a Euclidean number

p# + 1 = 2 · 3 · 5 · 7 · · · p + 1

that is a perfect square.
40. Consider a prime p ≡ 1 (mod 60). Show that there exist positive integers a and b with

p = a2 + b2, where 3 divides a or b and 5 divides a or b.
41. Prove that the sum

299 + 2999 + 29999 + · · · + 29999999999999

is divisible by 12.
42. Use Pell’s equation to show that there are infinitely many integers that are simultaneously

triangular numbers and perfect squares.
43. Given n > 0, show that there exist infinitely many k for which the integer (2k + 1)2n + 1

is prime.
44. Show that each term of the sequence

16, 1156, 111556, 11115556, 1111155556 . . . .

is a perfect square.
45. Find all primes of the form p2 + 2p, where p is a prime.
46. The primes 37,67,73,79, . . . are of the form p = 36ab + 6a − 6b + 1, with a ≥ 1,

b ≥ 1. Show that no pair of twin primes can contain a prime of this form.
47. Prove that n! is not a perfect square for n > 1.

[Hint: Use Bertrand’s conjecture.]
48. A near-repunit is an integer k Rn that has n − 1 digits equal to 1, and one 0 in the k + 1’st

place from the right; that is,

k Rn = Rn−k−110k+1 + Rk = 111 · · · 11011 · · · 111

Show that if gcd(n − 1, 3k) > 1, then k Rn is composite.
49. Let p1, p2, . . . , pn be the first n primes in the natural order. Show that there are at least

two new primes in the interval pn < x ≤ p1 p2 · · · pn + 1 for n ≥ 2.
50. Verify that there exist no primes p and q that satisfy the condition p2 = 10q − 999.

[Hint: Work modulo 7.]
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TABLE 1

The least primitive root r of each prime p, where 2 < p < 1000.

P

2

3
5
7

11

13
17
19

23
29

31
37
41
43
47

53
59
61

67
71

73
79

83
89
97

101

103
107

109

113

r

1

2

2

3
2

2

3
2

5
2

3
2
6
3
5

2
2
2

2
7

5

3
2

3
5

2

5
2
6
3

P

127

131
137
139
149

151
157

163
167

173

179
181

191
193
197

199
211

223
227

229

233
239
241
251

257

263
269
271
277
281

r

3
2

3
2

2

6

5
2
5
2

2
2

19
5
2

3
2

3
2
6

3
7

7
6
3

5
2
6
5
3

P

283
293
307

311
313

317

331
337
347

349

353
359
367
373
379

383
389
397
401

409

419
421

431
433
439

443
449
457
461
463

r

3
2
5
17

10

2

3
10
2
2

3
7
6

2

2

5

2
5

3
21

2
2

7
5
15

2

3

13
2
3

P

467

479
487

491
499

503
509
521

523
541

547

557

563
569
571

577

587

593
599
601

607

613
617
619
631

641
643
647
653
659

r

2

13
3
2

7

5
2

3
2
2

2
2
2

3
3

5
2
3
7
7

3
2

3
2

3

3
11
5
2
2

/>

661
673
677

683

691

701
709
719
727

733

739
743
751
757
761

769

773
787
797

809

811
821

823
827

829

839

853
857

859
863

r

2

5
2

5

3

2
2

11

5
6

3
5
3
2

6

11

2
2

2

3

3
2

3
2
2

11

2

3
2

5

P

877
881

883
887
907

911

919
929
937
941

947

953
967
971

977

983
991
997

r

2

3
2

5
2

17
7

3
5
2

2

3
5
6

3

5
6
T
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TABLE 2

The smallest prime factor of each odd integer n, 3 S n < 4999, not divisible by°>\a dash in the
table indicates that n is itself prime.

1
3
7
9
11
13
17

19
21

23
27

29
31

33
37
39
41
43
47
49
51
53
57
59
61
63
67
69
71

73
77
79
81

83
87
89
91
93
97
99

—
—
3

—
—
—
—
3

—
3

——
3

—
3

—
—
—
7

3

—
3

—
—
3

—
3

—
—
7

—
3

—
3

—
7

3

—
3

101
103
107
109
111
113
117

119
121

123
127

129

131
133
137
139
141
143
147
149
151
153
157
159
161
163
167
169
171
173
177
179
181

183
187

189
191
193
197
199

_

—
—
—
3

—
3
7

11

3

—
3

—
7

—
—
3

11
3

—
—
3

—
3
7

—
—

13
3

—
3

—
—
3

11
3

—
—
——

201

203
207

209
211

213
217

219
221

223
227

229

231
233
237
239
241
243
247
249
251

253

257
259
261
263
267
269
271

273
277
279
281

283
287

289

291
293
297

299

3
7

3
11

—
3
7

3
13

—
—
—
3

—
3

—
—
3
13
3
—
11

—
7
3

—
3

—
—
3

—
3

—
—
7

17
3

—
3
13

301
303
307
309
311
313
317
319
321
323
327
329
331
333
337
339
341
343
347
349
351
353
357
359
361
363
367
369
371
373
377
379
381
383
387
389
391
393
397
399

7

3

—
3

—
—
—
11
3
17

3
7
—

3

—
3

11
7

—
—
3
—
3

—
19
3
—
3
7

—
13

—
3
—
3

—
17

3

—
3

401
403
407
409
411
413
417
419
421
423
427

429

431
433
437
439
441
443
447
449
451
453
457
459
461
463
467
469
471

473
477
479
481

483
487

489
491
493
497
499

_

13
11

—
3
7

3
—

—
3
7

3

—
—
19

—
3

—
3
—
11
3
—
3

—
—
—
7

3
11
3

—
13
3

—
3

—
17

7

—



P1: IML/OVY P2: IML/OVY QC: IML/OVY T1: IML

bur83147_ch18_387_420 Burton DQ032A-Elementary-v2.cls December 16, 2009 17:32

TABLES 395

TABLE 2 (cont'd)

501

503
507

509

511

513
517

519
521

523
527

529
531

533
537

539
541

543
547

549
551

553
557

559
561

563
567

569
571

573
577

579
581

583
587

589
591

593
597

599

3
—
3
—
7

3
11
3
—
—
17

23
3
13
3
7

—

3
—
3
19
7

13
3
—
3
—
—

3
—
3
7

11
—

19

3
—
3
—

601

603
607

609
611

613
617
619
621

623
627

629

631

633
637
639
641
643
647

649
651

653
657

659
661

663
667

669
671

673
677

679
681

683

687

689
691

693
697

699

3
—
3
13
—
—
—
3
7

3
17
—

3
7

3
—
—
—
11
3
—
3
—
—
3
23

3
11
—
—
7

3
—
3
13
—
3
17

3

701

703
707

709
71 1

713
717
719
721

723

727

729

731
733
737
739
741

743
747

749
751

753
757

759
"'61

763
767

769
771

773
777

779
781

783
787

789

791

793
797

799

19
7

—

3
23
3
—
7

3
—
3
17
—

11

—

3
—
3
7
—

3
—
3
—
7

13

—
3
—
3
19
11

3
—
3
•7

13
—
17

801

803
80̂
809

811

813
817

819
821

823
82̂
829

831

833
837
839
841

843
847

849
851

853
857

859
861

863
S6"7

869
871

873
877

879
881

883
887

889
891

893
897

899

3
11
3
—
—
3
19
3
—
—
—
—
3
7

3
—
29

3
7

3
23
—
—

—

3
—
3

11
13
3
—
3
—
—
—
7
3
19
3
29

901

903
907

909
911

913
917

919
921

923
927

929

931
933
937

939
941
943
947

949
951

953
957

959
961

963
967

969
971

973
977

979
981

983
987

989
991

993
997

999

17

3
—
3
—
ll
7

—

3
13
3
—
7

3
—
3
—
23
—
13
3
—
3
7

31
3
—
3
—
7

—

11
3
—
3
23
—
3
—
3
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TABLE 2 (cont'd)

1001 7
1003 17
1007 19
1009 —
1011 3
1013 —
1017 3
1019 —
1021 —
1023 3
1027 13
1029 3
1031 —
1033 —
1037 17
1039 —
1041 3
1043 7
1047 3
1049 —
1051 —
1053 3
1057 7
1059 3
1061 —
1063 —
1067 1 1
1069 —
1071 3
1073 29
1077 3
1079 13
1081 23
1083 3
1087 —
1089 3
1091 —
1093 —
1097 —
1099 7

1101 3
1103 —
1107 3
1109 —
1111 11
1113 3
1117 —
1119 3
1121 19
1123 —
1127 7
1129 —
1131 3
1133 11
1137 3
1139 17
1141 7
1143 3
1147 31
1149 3
1151 —
1153 —
1157 13
1159 19
1161 3
1163 —
1167 3
1169 7
1171 —
1173 3
1177 11
1179 3
1181 —

1183 7
1187 —
1189 29
1191 3
1193 —
1197 3
1199 11

1201 —
1203 3
1207 17
1209 3
1211 7
1213 —
1217 —
1219 23
1221 3
1223 —
1227 3
1229 —
1231 —
1233 3
1237 —
1239 3
1241 17
1243 11
1247 29
1249 —
1251 3
1253 7
1257 3
1259 —
1261 13
1263 3
1267 7
1269 3
1271 31
1273 19
1277 —
1279 —
1281 3
1283 —
1287 3
1289 —
1291 —
1293 3
1297 —
1299 3

1301 —
1303 —
1307 —
1309 7
1311 3
1313 13
1317 3
1319 —
1321 —
1323 3
1327 —
1329 3
1331 11
1333 31
1337 7
1339 13
1341 3
1343 17
1347 3
1349 19
1351 7
1353 3
1357 23
1359 3
1361 —
1363 29
1367 —
1369 37
1371 3
1373 —
1377 3
1379 7
1381 —
1383 3
1387 19
1389 3
1391 13
1393 7
1397 11
1399 —

1401 3
1403 23
1407 3
1409 —
1411 17
1413 3
1417 13
1419 3
1421 7
1423 —
1427 —
1429 —
1431 3
1433 —
1437 3
1439 —
1441 11
1443 3
1447 —
1449 3
1451 —
1453 —
1457 31
1459 —
1461 3
1463 7
1467 3
1469 13
1471 —
1473 3
1477 7
1479 3
1481 —
1483 —
1487 —
1489 —
1491 3
1493 —
1497 3
1499 —
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1501 19
1503 3
1507 11
1509 3
1511 —
1513 17
1517 37
1519 7
1521 3
1523 —
1527 3
1529 11
1531 —
1533 3
1537 29
1539 3
1541 23
1543 —
1547 7
1549 —
1551 3
1553 —
1557 3
1559 —
1561 7
1563 3
1567 —
1569 3
1571 —
1573 11
1577 19
1579 —
1581 3
1583 —
1587 3
1589 7
1591 37
1593 3
1597 —
1599 3

1601 —
1603 7
1607 —
1609 —
1611 3
1613 —
1617 3
1619 —
1621 —
1623 3
1627 —
1629 3
1631 7
1633 23
1637 —
1639 H
1641 3
1643 31
1647 3
1649 17
1651 13
1653 3
1657 —
1659 3
1661 11
1663 —
1667 —
1669 —
1671 3
1673 7
1677 3
1679 23
1681 41
1683 3
1687 7
1689 3
1691 19
1693 —
1697 —
1699 —

1701 3
1703 13
1707 3
1709 —
1711 29
1713 3
1717 17
1719 3
1721 —
1723 —
1727 11
1729 7
1731 3
1733 —
1737 3
1739 37
1741 —
1743 3
1747 —
1749 3
1751 17
1753 —
1757 7
1759 —
1761 3
1763 41
1767 3
1769 29
1771 7
1773 3
1777 —
1779 3
1781 13
1783 —
1787 —
1789 —
1791 3
1793 11
1797 3
1799 7

1801 —
1803 3
1807 13
1809 3
1811 —
1813 7
1817 23
1819 17
1821 3
1823 —
1827 3
1829 31
1831 —
1833 3
1837 11
1839 3
1841 7
1843 19
1847 —
1849 43
1851 3
1853 17
1857 3
1859 11
1861 —
1863 3
1867 —
1869 3
1871 —
1873 —
1877 —
1879 —
1881 3
1883 7
1887 3
1889 —
1891 31
1893 3
1897 7
1899 3

1901 —
1903 11
1907 —
1909 23
1911 3
1913 —
1917 3
1919 19
1921 17
1923 3
1927 41
1929 3
1931 —
1933 —
1937 13
1939 7
1941 3
1943 29
1947 3
1949 —
1951 —
1953 3
1957 19
1959 3
1961 37
1963 13
1967 7
1969 11
1971 3
1973 —
1977 3
1979 —
1981 7
1983 3
1987 —
1989 3
1991 11
1993 —
1997 —
1999 —
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2001 3

2003 —
2007 3

2009 7
2011 —

2013 3
2017 —

2019 3
2021 43

2023 7
2027 —

2029 —

2031 3
2033 19
2037 3
2039 —
2041 13
2043 3
2047 23
2049 3

2051 7

2053 —
2057 11

2059 29
2061 3
2063 —
2067 3
2069 —
2071 19
2073 3
2077 31
2079 3
2081 —
2083 —
2087 —
2089 —
2091 3
2093 7
2097 3
2099 —

2101 11

2103 3
2107 7

2109 3
2111 —

2113 —
2117 29

2119 13
2121 3

2123 11
2127 3
2129 —
2131 —
2133 3
2137 —
2139 3
2141 —
2143 —
2147 19
2149 7
2151 3
2153 —
2157 3
2159 17
2161 —
2163 3
2167 11
2169 3
2171 13
2173 41
2177 7

2179 —
2181 3

2183 37
2187 3
2189 11
2191 7

2193 3
2197 13
2199 3

2201 31
2203 —
2207 —

2209 47
2211 3

2213 —
2217 3

2219 7
2221 —

2223 3
2227 17

2229 3
2231 23
2233 7
2237 —

2239 —
2241 3
2243 —
2247 3
2249 13
2251 —
2253 3
2257 37
2559 3
2261 7

2263 31
2267 —

2269 —
2271 3
2273 —
2277 3

2279 43
2281 —
2283 3
2287 —
2289 3

2291 29

2293 —
2297 —

2299 11

2301 3
2303 7
2307 3
2309 —
2311 —
2313 3
2317 7
2319 3
2321 11
2323 23
2327 13
2329 17
2331 3
2333 —
2337 3
2339 —
2341 —
2343 3
2347 —
2349 3
2351 —
2353 13
2357 —
2359 7
2361 3
2363 17
2367 3
2369 23
2371 —
2373 3
2377 —
2379 3
2381 —
2383 —
2387 7
2389 —
2391 3
2393 —
2397 3
2399 —

2401 7

2403 3
2407 29

2409 3
2411 —

2413 19
2417 —

2419 41
2421 3

2423 —
2427 3
2429 7
2431 11
2433 3
2437 —
2439 3
2441 —
2443 7
2447 —

2449 31
2451 3
2453 11
2457 3

2459 —
2461 23
2463 3
2467 —

2469 3
2471 7

2473 —
2477 —

2479 37
2481 3
2483 13
2487 3
2489 19
2491 47

2493 3
2497 11

2499 3
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TABLES 399

TABLE 2 (cont'd)

2501 41

2503 —
2507 23
2509 13

2511 3

2513 7
2517 3

2519 11
2521 —

2523 3
2527 7

2529 3

2531 —
2533 17
2537 43
2539 —
2541 3

2543 —
2547 3

2549 —
2551 —
2553 3
2557 —

2559 3
2561 13

2563 1 1
2567 17

2569 7
2571 3

2573 31
2577 3

2579 —
2581 29
2583 3
2587 13
2589 3

2591 —
2593 —
2597 7
2599 23

2601 3

2603 19
2607 3
2609 —
2611 7

2613 3
2617 —

2619 3
2621 —

2623 43
2627 37

2629 1 1
2631 3

2633 —
2637 3
2639 7
2641 19
2643 3
2647 —
2649 3
2651 11
2653 7
2657 —

2659 —
2661 3

2663 —
2667 3
2669 17
2671 —
2673 3
2677 —

2679 3
2681 7

2683 —
2687 —

2689 —
2691 3

2693 —
2697 3
2699 —

2701 37

2703 3
2707 —

2709 3
2711 —
2713 —
2717 11
2719 —
2721 3
2723 7
2727 3

2729 —
2731 —
2733 3
2737 7

2739 3
2741 —
2743 13
2747 41
2749 —
2751 3
2753 —
2757 3

2759 31
2761 11

2763 3
2767 —
2769 3
2771 17
2773 47
2777 —

2779 7
2781 3
2783 1 1
2787 3

2789 —
2791 —
2793 3
2797 —
2799 3

2801 —
2803 —
2807 7

2809 53
2811 3
2813 29
2817 3
2819 —
2821 7

2823 3
2827 11

2829 3
2831 19
2833 —
2837 —

2839 17
2841 3

2843 —
2847 3
2849 7
2851 —
2853 3
2857 —

2859 3
2861 —
2863 7
2867 47
2869 19
2871 3
2873 13
2877 3

2879 —
2881 43
2883 3
2887 —

2889 3
2891 7

2893 11
2897 —
2899 13

2901 3

2903 —
2907 3

2909 —
2911 41

2913 3
2917 —

2919 3
2921 23

2923 37
2927 —

2929 29
2931 3
2933 7
2937 3

2939 —
2941 17

2943 3
2947 7

2949 3
2951 13

2953 —
2957 —

2959 11
2961 3

2963 —
2967 3
2969 —
2971 —
2973 3
2977 13

2979 3
2981 11
2983 19
2987 29

2989 7
2991 3
2993 41
2997 3
2999 —
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400 TABLES

TABLE 2 (cont'd)

3001 —
3003 3
3007 31

3009 3
3011 —
3013 23
3017 7
3019 —
3021 3
3023 —
3027 3
3029 13

3031 7
3033 3
3037 —
3039 3
3041 —
3043 17
3047 1 1

3049 —
3051 3
3053 43
3057 3

3059 7
3061 —
3063 3
3067 —
3069 3
3071 37
3073 7
3077 17
3079 —
3081 3
3083 —
3087 3
3089 —
3091 11
3093 3
3097 19
3099 3

3101 7

3103 29
3107 13
3109 —
3111 3
3113 11
3117 3
3119 —
3121 —
3123 3
3127 53
3129 3
3131 31
3133 13
3137 —
3139 43
3141 3
3143 7
3147 3
3149 47
3151 23
3153 3
3157 7
3159 3
3161 29
3163 —
3167 —
3169 —
3171 3
3173 19
3177 3
3179 11
3181 —
3183 3
3187 —
3189 3
3191 —
3193 31
3197 23
3199 7

3201 3
3203 —
3207 3

3209 —
3211 13
3213 3
3217 —
3219 3
3221 —
3223 11
3227 7

3229 —
3231 3
3233 53
3237 3
3239 41
3241 7
3243 3
3247 17
3249 3
3251 —
3253 —
3257 —

3259 —
3261 3
3263 13
3267 3
3269 7
3271 —
3273 3
3277 29
3279 3
3281 17

3283 7
3287 19
3289 11
3291 3
3293 37
3297 3

3299 —

3301 —
3303 3
3307 —

3309 3
3311 7
3313 —
3317 31
3319 —
3321 3
3323 —
3327 3

3329 —
3331 —
3333 3
3337 47
3339 3
3341 13

3343 —
3347 —

3349 17
3351 3
3353 7
3357 3
3359 —
3361 —

3363 3
3367 7
3369 3
3371 —
3373 —
3377 11
3379 31
3381 3
3383 17
3387 3
3389 —
3391 —
3393 3
3397 43
3399 3

3401 19
3403 41
3407 —
3409 7
3411 3
3413 —
3417 3
3419 13
3421 11
3423 3
3427 23
3429 3
3431 47
3433 —
3437 7

3439 19
3441 3
3443 11
3447 3

3449 —
3451 7
3453 3
3457 —
3459 3
3461 —

3463 —
3467 —

3469 —
3471 3
3473 23
3477 3
3479 7
3481 59
3483 3
3487 1 1
3489 3
3491 —
3493 7
3497 13
3499 —
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TABLES 401

TABLE 2 (cont'd)

3501 3
3503 31
3507 3
3509 11
3511 —
3513 3
3517 —
3519 3
3521 7
3523 13
3527 —
3529 —
3531 3
3533 —
3537 3
3539 —
3541 —
3543 3
3547 —
3549 3
3551 53
3553 11
3557 —
3559 —
3561 3
3563 7
3567 3
3569 43
3571 —
3573 3
3577 7

3579 3
3581 —

3583 —
3587 17
3589 37
3591 3
3593 —
3597 3
3599 59

360 1 1 3
3603 3
3607 —
3609 3
3611 23
3613 —
3617 —
3619 7
3621 3
3623 —
3627 3
3629 19
3631 —
3633 3
3637 —
3639 3
3641 11
3643 —
3647 7
3649 41
3651 3
3653 13
3657 3
3659 —
3661 7
3663 3
3667 19
3669 3
3671 —
3673 —
3677 —
3679 13
3681 3
3683 29
3687 3
3689 7
3691 —
3693 3
3697 —
3699 3

3701 —

3703 7

3707 1 1

3709 —
3711 3
3713 47
3717 3

3719 —
3721 61

3723 3
3727 —
3729 3
3731 7
3733 —
3737 37
3739 —
3741 3
3743 19
3747 3
3749 23
3751 11
3753 3
3757 13
3759 3
3761 —
3763 53
3767 —
3769 —
3771 3
3773 7
3777 3
3779 —
3781 19

3783 3
3787 7
3789 3
3791 17

3793 —
3797 —
3799 29

3801 3
3803 —
3807 3
3809 13
3811 37

3813 3
3817 11
3819 3
382 1 —
3823 —

3827 43
3829 7

3831 3
3833 —
3837 3
3839 11
3841 23
3843 3
3847 —

3849 3

3851 —

3853 —
3857 7

3859 17
386 1 3
3863 —
3867 3
3869 53
3871 7

3873 3
3877 —
3879 3
3881 —
3883 1 1
3887 13
3889 —
3891 3
3893 17
3897 3
3899 7

3901 47
3903 3
3907 —
3909 3
3911 —
3913 7
3917 —
3919 —
3921 3
3923 —
3927 3
3929 —
3931 —
3933 3
3937 31
3939 3
3941 7
3943 —
3947 —
3949 11
3951 3
3953 59
3957 3
3959 37
3961 17
3963 3
3967 —
3969 3
3971 11
3973 29
3977 41

3979 23
3981 3
3983 7
3987 3
3989 —
3991 13
3993 3
3997 7
3999 3
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402 TABLES

TABLE 2 (cont'd)

4001 —
4003 —
4007 —
4009 19
4011 3
4013 —
4017 3
4019 —
4021 —
4023 3
4027 —
4029 3
4031 29
4033 37
4037 11
4039 7
4041 3
4043 13
4047 3
4049 —
4051 —
4053 3
4057 —
4059 3
4061 31
4063 17
4067 7
4069 13
4071 3
4073 —
4077 3
4079 —
4081 7
4083 3
4087 61
4089 3
4091 —
4093 —
4097 17
4099 —

4101 3
4103 11
4107 3
4109 7
4111 —
4113 3
4117 23
4119 3
4121 13
4123 7
4127 —
4129 —
4131 3
4133 —
4137 3
4139 —
4141 41
4143 3
4147 11
4149 3
4151 7
4153 —
4157 —
4159 —
4161 3
4163 23
4167 3
4169 11
4171 43
4173 3
4177 —
4179 3
4181 37
4183 47
4187 53
4189 59
4191 3
4193 7
4197 3
4199 13

4201 —
4203 3
4207 7
4209 3
4211 —
4213 11
4217 —
4219 —
4221 3
4223 41
4227 3
4229 —
4231 —
4233 3
4237 19
4239 3
4241 —
4243 —
4247 31
4249 7
4251 3
4253 —
4257 3
4259 —
4261 —
4263 3
4267 17
4269 3
4271 —
4273 —
4277 7
4279 11
4281 3
4283 —
4287 3
4289 —
4291 7
4293 3
4297 —
4299 3

4301 11
4303 13
4307 59
4309 31
4311 3
4313 19
4317 3
4319 7
4321 29
4323 3
4327 —
4329 3
4331 61
4333 7
4337 —
4339 —
4341 3
4343 43
4347 3
4349 —
4351 19
4353 3
4357 —
4359 3
4361 7
4363 —
4367 11
4369 17
4371 3
4373 —
4377 3
4379 29
4381 13
4383 3
4387 41
4389 3
4391 —
4393 23
4397 —
4399 53

4401 3
4403 7
4407 3
4409 —
4411 11
4413 3
4417 7
4419 3
4421 —
4423 —
4427 19
4429 43
4431 3
4433 11
4437 3
4439 23
4441 —
4443 3
4447 —
4449 3
4451 —
4453 61
4457 —
4459 7
4461 3
4463 —
4467 3
4469 41
4471 17
4473 3
4477 11
4479 3
4481 —
4483 —
4487 7
4489 67
4491 3
4493 —
4497 3
4499 1 1
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TABLES 403

TABLE 2 (cont'd)

4501 7

4503 3
4507 —
4509 3
4511 13
4513 —
4517 —
4519 —
4521 3
4523 —
4527 3
4529 7
4531 23
4533 3
4537 13
4539 3
4541 19
4543 7
4547 —
4549 —
4551 3
4553 29
4557 3
4559 47
4561 —

4563 3
4567 —
4569 3
4571 7
4573 17
4577 23
4579 19
4581 3
4583 —
4587 3
4589 13
4591 —
4593 3
4597 —
4599 3

4601 43
4603 —
4607 17
4609 11
4611 3
4613 7
4617 3
4619 31
4621 —

4623 3
4627 7
4629 3
4631 11
4633 41
4637 —
4639 —
464 1 3
4643 —
4647 3
4649 —
4651 —
4653 3
4657 —
4659 3
4661 59
4663 —
4667 13
4669 7
4671 3
4673 —
4677 3
4679 —
4681 31

4683 3
4687 43
4689 3
4691 —
4693 13
4697 7
4699 37

4701 3
4703 —
4707 3
4709 17
4711 7
4713 3
4717 53
4719 3
4721 —

4723 —
4727 29
4729 —
4731 3
4733 —
4737 3
4739 7
4741 11
4743 3
4747 47
4749 3
4751 —
4753 7
4757 67
4759 —
4761 3
4763 11
4767 3
4769 19
4771 13
4773 3
4777 17
4779 3
4781 7
4783 —
4787 —
4789 —
4791 3
4793 —
4797 3
4799 —

4801 —

4803 3
4807 11
4809 3
4811 17
4813 —
4817 —
4819 61
4821 3
4823 7
4827 3
4829 11
4831 —
4833 3
4837 7
4839 3
4841 47
4843 29
4847 37
4849 13
4851 3
4853 23
4857 3
4859 43
4861 —

4863 3
4867 31
4869 3
4871 —
4873 11
4877 —
4879 7
4881 3
4883 19
4887 3
4889 —
4891 67
4893 3
4897 59
4899 3

4901 13
4903 —
4907 7

4909 —
4911 3
4913 17
4917 3
4919 —
4921 7

4923 3
4927 13
4929 3
4931 —
4933 —
4937 —
4939 1 1
4941 3
4943 —
4947 3
4949 7
4951 —
4953 3
4957 —
4959 3
496 1 1 1
4963 7
4967 —
4969 —
4971 3
4973 —
4977 3
4979 13
4981 17

4983 3
4987 —
4989 3
4991 7
4993 —
4997 19
4999 —
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404 TABLES

The prime numbers between 5000 and 10,000.

5003
5009
5011
5021

5023

5039
5051

5059
5077

5081

5087

5099
5101

5107

5113

5119
5147

5153
5167

5171

5179

5189
5197

5209
5227

5231
5233
5237
5261

5273

5279
5281

5297

5303
5309

5323
5333
5347

5351
5381

5387

5393
5399
5407

5413

5417

5419

5431
5437

5441

5443
5449
5471

5477

5479

5483
5501

5503
5507

5519

5521

5527

5531
5557

5563

5569

5573
5581

5591

5623

5639
5641

5647

5651

5653

5657

5659

5669
5683
5689

5693
5701

5711

5717
5737

5741

57>B
5749

5779

5783

5791
5801

5807

5813
5821

5827

5839

5843
5849
5851

5857
5861

5867

5869
5879

5881

5891

5903
5923
5927

5939

5953
5981

5987
6007

6011

6029
6037

6043
6047

6053
6067

6073
6079
6089

6091
6101

6113
6121

6131

6133

6143
6151

6163
6173

6197

6199

6203
6211

6217

6221

6229
6247
6257

6263

6269
6271
6277
6287

6299

6301

6311
6317

6323

6329

6337

6343

6353
6359
6361

6367

6373
6379
6389
6397

6421

6427

6449
6451

6469

6473
6481

6491
6521

6529

6547
6551

6553
6563
6569

6571

6577
6581

6599
6607

6619
6637

6653
6659
6661

6673
6679

6689

6691
6701

6703
6709

6719

6733
6737

6761

6763
6779
6781

6791

6793
6803
6823
6827

6829

6833
6841

6857
6863

6869

6871

6883
6899
6907

6911

6917

6947

6949
6959
6961

6967
6971
6977

6983

6991

6997
7001

7013
7019
7027

7039
7043
7057

7069
7079

7103
7109
7121

7127

7129

7151

7159
7177
7187

7193

7207
7211

7213
7219
7229

7237

7243
7247

7253
7283

7297

7307

7309
7321

7331

7333
7349
7351

7369

7393

7411

7417

7433
7451

7457

7459
7477
7481

7487

7489

TABLE 3
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TABLES 405

TABLE 3 (cont'd)

7499
7507

7517

7523
7529

7537
7541

7547

7549

7559

7561

7573
7577

7583
7589

7591

7603
7607
7621

7639

7643
7649
7669

7673
7681

7687

7691

7699

7703
7717

7723
7727
7741

7753
7757

7759
7789

7793
7817

7823

7829
7841

7853
7867

7873

7877

7879
7883
7901

7907

7919
7927

7933
7937

7949

7951

7963
7993

8009
8011

8017

8039

8053
8059
8069

8081

8087

8089
8093
8101

8111

8117

8123
8147
8161

8167

8171

8179
8191

8209

8219
8221

8231
8233
8237

8243
8263

8269
8273
8287

8291

8293
8297

8311
83 T 7

8329

8353

8363
8369
8377

8387

8389

8419
8423
8429

8431

8443
8447
8461

8467

8501

8513
8521

8527
8537

8539

8543

8563
8573
8581

8597

8599

8609
8623
8627

8629
8641

8647

8663
8669

8677
8681

8689

8693
8699

8707

8713
8719

8731
8737

8741

8747

8753
8761

8779

8783

8803
8807

8819
8821

8831
8837

8839
8849
8861

8863
8867
8887

8893

8923

8929

8933
8941

8951

8963

8969
8971

8999
9001

9007

9011

9013
9029
9041

9043

9049
9059
9067

9091
9103

9109
9127

9133
9137

9151

9157
9161

9173
9181

9187

9199

9203
9209
9221

9227

9239
9241
9257

9277
9281

9283

9293

9311
9319

9323

9337

9341

9343
9349
9371

9377

9391
9397

9403
9413

9419
9421

9431
9433
9437

9439
9461

9463
9467

9473

9479
9491
9497

9511
9521

9533

9539
9547

9551
9587

9601

9613

9619

9623
9629

9631
9643
9649
9661

9677

9679
9689
9697

9719
9721

9733
9739

9743
9749
9767

9769
9781

9787

9791

9803

9811
9817

9829

9833
9839

9851

9857

9859
9871

9883

9887
9901

9907

9923
9929

9931
9941

9949
9967

9973
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406 TABLES

The number of primes and the number of pairs of twin primes in the indicated intervals.

Interval

1-100
101-200
201-300
301-400
401-500

501-600
601-700
701-800
801-900
901-1000

2501-2600
2601-2700
2701-2800
2801-2900
2901-3000

10001-10100
10101-10200
10201-10300
10301-10400
10401-10500

29501-29600
29601-29700
29701-29800
29801-29900
29901-30000

100001-100100
100101-100200
100201-100300
100301-100400
100401-100500

299501-299600
299601-299700
299701-299800
299801-299900
299901-300000

Number of
primes

25
21
16
16
17

14
16
14
15
14

11
15
14
12
11

11
12
10
12
10

10
8
7

10
7

6
9
8

9
8

7
8
8
6
9

Number of
pairs of

twin primes

8
7
4
2

3

2
3
0
5
0

2
2

3
1
1

4
1
1
2
2

1
1
1
1
0

0
1
0
2
0

1
1
0
0
0

TABLE 4
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TABLES 407

TABLE 5

The values ofr(n), a(n), <t>(n), and n(n), where 1 < n < 100.

n

1
2

3
4
5
6
7

8

9
10
11
12
13
14
15
16
17
18

19
20

21
22

23
24

25
26
27
28

29
30

31
32
33
34
35
36
37
38
39
40

r(n)

1

2
2

3
2

4
2

4
3
4
2

6
2
4
4
5
2
6
2

6

4
4
2

8

3
4
4
6
2

8
2

6
4
4
4
9
2
4
4
8

"(n)

1
3
4
7
6
12
8

15

13
18
12

28
14
24

24
31
18
39
20
42

32
36
24

60

31
42
40
56

30
72
32
63
48

54
48
91
38
60
56
90

<t>(n)

\
1
2
2
4
2
6
4
6
4
10
4
12
6
8
8
16
6
18
8
12

10
22

8

20
12
18
12

28

8
30

16
20

16
24

12
36
18
24
16

n(n)

1
-1
-1
0

-1
1

-1
0

0

1
-1
0

-1
1
1
0

-1
0

-1
0

1
1

-1
0

0
1
0
0

— 1
-1
-1
0
1
1
1
0

-1
1
1
0

n

41
42

43
44

45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70

71
72

73
74

75
76

77
78

79
80

r(n)

2

8
2

6
6
4
2

10

3
6
4
6
2
8
4

8

4
4
2

12

2
4
6
7
4
8
2
6
4
8
2

12
2

4
6
6
4
8
2

10

"(n)

42
96

44
84

78
72
48

124

57
93
72

98

54
120
72
120

80
90

60

168
62
96
104

127
84

144
68
126
96

144
72

195
74

114
124
140
96
168

80
186

*(n)

40
12

42

20

24
22
46

16

42
20
32
24

52
18
40
24

36
28
58
16
60
30
36
32

48

20
66
32
44
24
70

24

72

36
40
36
60
24
78
32

H(n)

-1

-1
-1

0
0
1

-1
0

0
0
1
0

-1
0
1
0
1
1

-1
0

-1
1
0

0
1

-1
-1
0
1

-1
-1
0

-1
1
0
0
1

-1
-1
0
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TABLE 5 (cont'd)

n

81

82

83
84

85
86

87
88

89
90

r(n)

5
4
2

12

4
4
4
8
2

12

a(n)

121

126

84
224

108
132

120

180
90

234

<t>(n)

54
40
82
24

64

42

56
40
88
24

*(n)

0
1

-1

0
1

1

1

0
— 1
0

n

91
92
93
94
95
96
97
98
99
100

r(n)

4
6
4
4
4
12

2

6
6
9

a(n)

112

168

128
144

120

252

98
171
156
217

<t>(n)

72
44
60
46
72

32
96
42
60

40

n(n)

1

0

1

1

1

0

1
0
0

0
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TABLE 6
Known Mersenne primes.

Mersenne number

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

2 2 - l
2 3 - l
2s -1
2 7 - l
213 -
217-
219 _

231-
261 _

289_

2107 _ |

2127 - 1

2521 - 1
2607 _ |

21279 _ |

22203 _ |

22281 _ |

23217 _ |

24253 _ l

24423 _ |

29689 _ |

29941 _ |

2 I 1 2 1 3 _

2 19937 _

2217()l _

2232()9 _

244497 _

286243 _

2 110503 _ |

2 132049 _ |

2216091 _ |

2756839 _ |

2859433 _ |

2 1257787 _ |

2 1398269 _ |

22976221 _ |

23021377 _ |

26972593 _ j

2I3466917 _ |

220996011 _ |

224036583 _ J

225964951 _ J

230402457 _ J

232582657 _ J

243112609 _ |

237156667 _ |

242643801 _ |

Number of digits

1
1
2
3
4
6
6
10
19
27
33
39
157
183
386
664
687
969
1281
1332
2917
2993
3376
6002
6533
6987
13395
25962
33265
39751
65050
227832
258716
378632
420921
895932
909526
2098960
4059346
6320430
7235733
7816230
9152052
9808358
12978189
11185272
12837064

Date of discovery

unknown
unknown
unknown
unknown
1456
1588
1588
1772
1883
1911
1914
1876
1952
1952
1952
1952
1952
1957
1961
1961
1963
1963
1963
1971
1978
1978
1979
1983
1989
1983
1985
1992
1994
1996
1996
1996
1998
1999
2001
2003
2004
2005
2005
2006
2008
2008
2009
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SECTION 1.1

5. (a) 4, 5, and 7.
(b) (3 · 2)! �= 3!2!, (3 + 2)! �= 3! + 2!.

SECTION 2.1

5. (a) t6 = 21 and t5 = 15.
6. (b) 12 = t1, 62 = t8, 2042 = t288.
9. (b) Two examples are t6 = t3 + t5, t10 = t4 + t9.

SECTION 2.4

1. 1, 9, and 17.
2. (a) x = 4, y = −3.

(b) x = 6, y = −1.
(c) x = 7, y = −3.
(d) x = 39, y = −29.

8. 32,461, 22,338, and 23,664.
12. x = 171, y = −114, z = −2.

SECTION 2.5

2. (a) x = 20 + 9t, y = −15 − 7t .
(b) x = 18 + 23t, y = −3 − 4t .
(c) x = 176 + 35t, y = −1111 − 221t .

3. (a) x = 1, y = 6.
(b) x = 2, y = 38; x = 9, y = 20; x = 16, y = 2.
(c) No solutions
(d) x = 17 − 57t, y = 47 − 158t , where t ≤ 0.

5. (a) The fewest coins are 3 dimes and 17 quarters, whereas 43 dimes and 1 quarter give
the largest number. It is possible to have 13 dimes and 13 quarters.

410
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(b) There may be 40 adults and 24 children, or 45 adults and 12 children, or 50 adults.
(c) Six 6’s and ten 9’s.

6. There may be 5 calves, 41 lambs, and 54 piglets; or 10 calves, 22 lambs, and 68 piglets;
or 15 calves, 3 lambs, and 82 piglets.

7. $10.21
8. (b) 28 pieces per pile is one answer.

(d) One answer is 1 man, 5 women, and 14 children.
(e) 56 and 44.

SECTION 3.1

2. 25 is a counterexample.
7. All primes ≤ 47.

11. (a) One example: 213 − 1 is prime.

SECTION 3.2

11. Two solutions are 59 − 53 = 53 − 47, 157 − 151 = 163 − 157.
14. R10 = 11 · 41 · 271 · 9091.

SECTION 3.3

3. 2 and 5
11. h(22) = 23 · 67.
14. 71, 13859
16. 37 = −1 + 2 + 3 + 5 + 7 + 11 − 13 + 17 − 19 + 23 − 29 + 31,

31 = −1 + 2 − 3 + 5 − 7 − 11 + 13 + 17 − 19 − 23 + 2(29).
19. 81 = 3 + 5 + 73, 125 = 5 + 13 + 107.
28. (b) n = 1.

SECTION 4.2

4. (a) 4 and 6
(b) 0

SECTION 4.3

1. 14147 ≡ 658 (mod 1537)
1953 ≡ 406 (mod 503)

3. 89
6. (a) 9

(b) 4
(c) 5
(d) 9

9. 7
11. x = 7, y = 8.
12. 143.
15. n = 1, 3.
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21. R6 = 3 · 7 · 11 · 13 · 37.
23. x = 3, y = 2.
24. x = 8, y = 0, z = 6.
26. (a) Check digits are 7; 5.

(b) a4 = 9.
27. (b) Incorrect

SECTION 4.4

1. (a) x ≡ 18 (mod 29).
(b) x ≡ 16 (mod 26).
(c) x ≡ 6, 13, and 20 (mod 21).
(d) No solutions
(e) x ≡ 45, and 94 (mod 98).
(f) x ≡ 16, 59, 102, 145, 188, 231, and 274 (mod 301).

2. (a) x = 15 + 51t, y = −1 − 4t .
(b) x = 13 + 25t, y = 7 − 12t .
(c) x = 14 + 53t, y = 1 + 5t .

3. x ≡ 11 + t (mod 13), y ≡ 5 + 6t (mod 13).
4. (a) x ≡ 52 (mod 105).

(b) x ≡ 4944 (mod 9889).
(c) x ≡ 785 (mod 1122).
(d) x ≡ 653 (mod 770).

5. x ≡ 99 (mod 210).
6. 62
7. (a) 548, 549, 550

(b) 52 | 350, 33 | 351, 24 | 352
8. 119
9. 301

10. 3930
14. 838
15. (a) 17

(b) 59
(c) 1103

16. n ≡ 1, 7, 13 (mod 15).
17. x ≡ 7, y ≡ 9 (mod 13).
18. x ≡ 59, 164 (mod 210).
19. x ≡ 7, y ≡ 0; x ≡ 3, y ≡ 1; x ≡ 7, y ≡ 2; x ≡ 3, y ≡ 3;

x ≡ 7, y ≡ 4; x ≡ 3, y ≡ 5; x ≡ 7, y ≡ 6; x ≡ 3, y ≡ 7.

20. (a) x ≡ 4 (mod 7), y ≡ 3 (mod 7).
(b) x ≡ 9 (mod 11), y ≡ 3 (mod 11).
(c) x ≡ 7 (mod 20), y ≡ 2 (mod 20).

SECTION 5.2

6. (a) 1
9. (b) x ≡ 16 (mod 31), x ≡ 10 (mod 11), x ≡ 25 (mod 29).
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SECTION 5.3

8. 5, 13
11. 12, 17; 6, 31

SECTION 5.4

1. (b) 127 · 83
(c) 691 · 29 · 17

3. 89 · 23
4. 29 · 17, 32 · 52 · 132

5. (a) 2911 = 71 · 41.
(b) 4573 = 17 · 269.
(c) 6923 = 23 · 301.

6. (a) 13561 = 71 · 191
7. (a) 4537 = 13 · 349.

(b) 14429 = 47 · 307.
8. 20437 = 107 · 191.

SECTION 6.1

2. 6; 6,300,402
12. (a) p9 and p4q; 48 = 24 · 3.

SECTION 6.3

3. 249, 330
5. (b) 150, 151, 152, 153, 154
8. (b) 36, 396
9. 405

SECTION 6.4

1. (a) 54
(b) 84
(c) 115

3. (a) Thursday
(b) Wednesday
(c) Monday
(d) Thursday
(e) Tuesday
(f) Tuesday

5. (a) 1, 8, 15, 22, 29
(b) August

6. 2009

SECTION 7.2

1. 720, 1152, 9600
18. φ(n) = 16 when n = 17, 32, 34, 40, 48, and 60.

φ(n) = 24 when n = 35, 39, 45, 52, 56, 70, 72, 78, 84, and 90.
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SECTION 7.3

7. 1
8. (b) x ≡ 19 (mod 26), x ≡ 34 (mod 40), x ≡ 7 (mod 49).

SECTION 7.4

10. (b) 29348, 29349, 29350, 29351

SECTION 8.1

1. (a) 8, 16, 16
(b) 18, 18, 9
(c) 11, 11, 22

8. (c) 217 − 1 is prime; 233 | 229 − 1.
11. (a) 3, 7

(b) 3, 5, 6, 7, 10, 11, 12, 14
12. (b) 41, 239

SECTION 8.2

2. 1, 4, 11, 14; 8, 18, 47, 57; 8, 14, 19, 25
3. 2, 6 ≡ 29, 7 ≡ 27, 8 ≡ 23;

2, 3 ≡ 213, 10 ≡ 217, 13 ≡ 25, 14 ≡ 27, 15 ≡ 211;
5, 7 ≡ 519, 10 ≡ 53, 11 ≡ 59, 14 ≡ 521, 15 ≡ 517, 17 ≡ 57, 19 ≡ 515,
20 ≡ 55, 21 ≡ 513.

4. (a) 7, 37
(b) 9, 10, 13, 14, 15, 17, 23, 24, 25, 31, 38, 40

5. 11, 50

SECTION 8.3

1. (a) 7, 11, 15, 19; 2, 3, 8, 12, 13, 17, 22, 23
(b) 2, 5;

2, 5, 11, 14, 20, 23;
2, 5, 11, 14, 20, 23, 29, 32, 38, 41, 47, 50, 56, 59, 65, 68, 74, 77

4. (b) 3
5. 6, 7, 11, 12, 13, 15, 17, 19, 22, 24, 26, 28, 29, 30, 34, 35;

7, 11, 13, 15, 17, 19, 29, 35, 47, 53, 63, 65, 67, 69, 71, 75
11. (b) x ≡ 34 (mod 40), x ≡ 30 (mod 77).

SECTION 8.4

1. ind2 5 = 9, ind6 5 = 9, ind7 5 = 3, ind11 5 = 3.
2. (a) x ≡ 7 (mod 11).

(b) x ≡ 5, 6 (mod 11).
(c) No solutions.
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3. (a) x ≡ 6, 7, 10, 11 (mod 17).
(b) x ≡ 5 (mod 17).
(c) x ≡ 3, 5, 6, 7, 10, 11, 12, 14 (mod 17).
(d) x ≡ 1 (mod 16).

4. 14
8. (a) In each case, a = 2, 5, 6.

(b) 1, 2, 4; 1, 3, 4, 5, 9; 1, 3, 9
12. Only the first congruence has a solution.
16. (b) x ≡ 3, 7, 11, 15 (mod 16); x ≡ 8, 17 (mod 18).
17. b ≡ 1, 3, 9 (mod 13).

SECTION 9.1

1. (a) x ≡ 6, 9 (mod 11).
(b) x ≡ 4, 6 (mod 13).
(c) x ≡ 9, 22 (mod 23).

8. (b) x ≡ 6, 11 (mod 17); x ≡ 17, 24 (mod 41)
11. (a) 1, 4, 5, 6, 7, 9, 11, 16, 17

(b) 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28;
1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28

SECTION 9.2

1. (a) −1
(b) 1
(c) 1
(d) −1
(e) 1

2. (a) (−1)3

(b) (−1)3

(c) (−1)4

(d) (−1)5

(e) (−1)9

SECTION 9.3

1. (a) 1
(b) −1
(c) −1
(d) 1
(e) 1

3. (a) Solvable
(b) Not solvable
(c) Solvable

6. p = 2 or p ≡ 1 (mod 4); p = 2 or p ≡ 1 or 3 (mod 8);
p = 2, p = 3 or p ≡ 1 (mod 6).

8. 73
14. x ≡ 9, 16, 19, 26 (mod 35).
16. −1, −1, 1
20. Not solvable
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SECTION 9.4

1. (b) x ≡ 57, 68 (mod 53).
2. (a) x ≡ 13, 14 (mod 33).

(b) x ≡ 42, 83 (mod 53).
(c) x ≡ 108, 235 (mod 73).

3. x ≡ 5008, 9633 (mod 114).
4. x ≡ 122, 123 (mod 53); x ≡ 11, 15 (mod 33).
6. x ≡ 41, 87, 105 (mod 27).
7. (a) When a = 1, x ≡ 1, 7, 9, 15 (mod 24).

When a = 9, x ≡ 3, 5, 11, 13 (mod 24).
(b) When a = 1, x ≡ 1, 15, 17, 31 (mod 25).

When a = 9, x ≡ 3, 13, 19, 29 (mod 25).
When a = 17, x ≡ 7, 9, 23, 25 (mod 25).
When a = 25, x ≡ 5, 11, 21, 27 (mod 25).

(c) When a = 1, x ≡ 1, 31, 33, 63 (mod 26).
When a = 9, x ≡ 3, 29, 35, 61 (mod 26).
When a = 17, x ≡ 9, 23, 41, 55 (mod 26).
When a = 25, x ≡ 5, 27, 37, 59 (mod 26).
When a = 33, x ≡ 15, 17, 47, 49 (mod 26).
When a = 41, x ≡ 13, 19, 45, 51 (mod 26).
When a = 49, x ≡ 7, 25, 39, 57 (mod 26).
When a = 57, x ≡ 11, 21, 43, 53 (mod 26).

9. (a) 4, 8
(b) x ≡ 3, 147, 153, 297, 303, 447, 453, 597 (mod 23 · 3 · 52).

10. (b) x ≡ 51, 70 (mod 112).

SECTION 10.1

4. (a) C ≡ 3P + 4 (mod 26).
(b) GIVE THEM UP.

5. (a) TAOL M NBJQ TKPB.
(b) DO NOT SHOOT FIRST.

6. (b) KEEP THIS SECRET
7. (a) UYJB FHSI HLQA.

(b) RIGHT CHOICEX.
8. (a) C1 ≡ P1 + 2P2 (mod 26), C2 ≡ 3P1 + 5P2 (mod 26).

(b) HEAR THE BELLS.
9. HS TZM

10. FRIDAY
11. 1747, 157
12. 253
13. 2014 1231 1263 0508 1106 1541 1331
14. REPLY NOW
15. SELL SHORT

SECTION 10.2

1. x2 = x4 = x6 = 1, x1 = x3 = x5 = 0.
x3 = x4 = x5 = 1, x1 = x2 = x6 = 0.
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x1 = x2 = x4 = x5 = 1, x3 = x6 = 0.
x1 = x2 = x3 = x6 = 1, x4 = x5 = 0.

2. (a) and (c) are superincreasing.
3. (a) x1 = x2 = x3 = x6 = 1, x4 = x5 = 0.

(b) x2 = x3 = x5 = 1, x1 = x4 = 0.
(c) x3 = x4 = x6 = 1, x1 = x2 = x5 = 0.

5. 3, 4, 10, 21
6. CIPHER.
7. (a) 14, 21, 49, 31, 9

(b) 45 49 79 40 70 101 79 49 35

SECTION 10.3

1. (a)
(43, 35)

(43, 17)

(43, 11)

(43, 15)

(43, 06)

(43, 20)

(43, 42)

(43, 00)

(43, 19)

(43, 19)
2. BEST WISHES
3. (23, 20) (23, 01) (12, 17) (12, 35) (13, 16) (13, 04)

4.
(1424, 2189)

(1424, 2002)

(1424, 127)

(1424, 669)

(1424, 2042)

(1424, 469)

SECTION 11.2

1. σ (n) = 2160(211 − 1) �= 2048(211 − 1).
8. 56

11. p3, pq
14. (b) There are none.
16. No.

SECTION 11.3

3. 233 | M29.

SECTION 11.4

3. (b) 3 | 22n + 5.
7. 258 + 1 = (229 − 215 + 1)(229 + 215 + 1) = 5 · 107367629 · 536903681.
9. (c) 83 | 241 + 1 and 59 | 229 + 1.

10. n = 315, p = 71, and q = 73.
11. 3 | 23 + 1.

SECTION 12.1

1. (a) (16, 12, 20), (16, 63, 65), (16, 30, 34)
(b) (40, 9, 41), (40, 399, 401); (60, 11, 61), (60, 91, 109),

(60, 221, 229), (60, 899, 901)
8. (12, 5, 13), (8, 6, 10)

12. (a) (3, 4, 5), (20, 21, 29), (119, 120, 169), (696, 697, 985), (4059, 4060, 5741)
(b) (t6, t7, 35), (t40, t41, 1189), (t238, t239, 40391)

13. t1 = 12, t8 = 62, t49 = 352, t288 = 2042, t1681 = 11892.
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SECTION 13.2

1. 113 = 72 + 82, 229 = 22 + 152, 373 = 72 + 182.
2. (a) 172 + 182 = 613, 42 + 52 = 41, 52 + 62 = 61, 92 + 102 = 181,

122 + 132 = 313.

5. (b) 3185 = 562 + 72, 39690 = 1892 + 632, 62920 = 2422 + 662.
6. 1105 = 5 · 13 · 17 = 92 + 322 = 122 + 312 = 232 + 242;

Note that 325 = 52 · 13 = 12 + 182 = 62 + 172 = 102 + 152.
14. 45 = 72 − 22 = 92 − 62 = 232 − 222.
18. 1729 = 13 + 123 = 93 + 103.

SECTION 13.3

2. (2870)2 = (12 + 22 + 32 + · · · + 202)2 leads to 5742 = 4142 + 82 + 162 + 242 + 322+
· · · + 1522, which is one solution.

6. One example is 509 = 122 + 132 + 142.
7. 459 = 152 + 152 + 32.

10. 61 = 53 − 43, 127 = 73 − 63.
13. 231 = 152 + 22 + 12 + 12, 391 = 152 + 92 + 92 + 22, 2109 = 442 + 122 + 52 + 22.
17. t13 = 33 + 43 = 63 − 53.
18. (b) When n = 12, 290 = 132 + 112 = 162 + 52 + 32 = 142 + 92 + 32 + 22

= 152 + 62 + 42 + 32 + 22.

SECTION 14.2

7. 2, 5, 144
8. u1, u2, u3, u4, u6, u12

11. u11 = 2u9 + u8, u12 = 6u8 + (u8 − u4).
12. u1, u2, u4, u8, u10

SECTION 14.3

7. 50 = u4 + u7 + u9, 75 = u3 + u5 + u7 + u10, 100 = u1 + u3 + u6 + u11,
125 = u3 + u9 + u11.

9. (3, 4, 5), (5, 12, 13), (8, 15, 17), (39, 80, 89), (105, 208, 233)

SECTION 15.2

1. (a) [−1; 1, 1, 1, 2, 6]
(b) [3; 3, 1, 1, 3, 2]
(c) [1; 3, 2, 3, 2]
(d) [0; 2, 1, 1, 3, 5, 3]

2. (a) −710/457
(b) 741/170
(c) 321/460

4. (a) [0; 3, 1, 2, 2, 1]
(b) [−1; 2, 1, 7]
(c) [2; 3, 1, 2, 1, 2]
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5. (a) 1, 3/2, 10/7, 33/23, 76/53, 109/76
(b) −3, −2, −5/2, −7/3, −12/5, −43/18
(c) 0, 1/2, 4/9, 5/11, 44/97, 93/205

6. (b) 225 = 4 · 43 + 4 · 10 + 3 · 3 + 2 · 1 + 2.
7. (a) 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985

(b) 1, 2, 5/3, 7/4, 19/11, 26/15, 71/41, 97/56, 265/153
(c) 2, 9/4, 38/17, 161/72, 682/305, 2889/1292, 12238/5473, 51841/23184,

219602/98209
(d) 2, 5/2, 22/9, 49/20, 218/89, 485/198, 2158/881, 4801/1960, 21362/8721
(e) 2, 3, 5/2, 8/3, 37/14, 45/17, 82/31, 127/48, 590/223

9. [3; 7, 16, 11], [3; 7, 15, 1, 25, 1, 7, 4]
11. (a) x = −8 + 51t, y = 3 − 19t .

(b) x = 58 + 227t, y = −93 − 364t .
(c) x = 48 + 5t, y = −168 − 18t .
(d) x = −22 − 57t, y = −61 − 158t .

SECTION 15.3

1. (a)
3 + √

15

3

(b)
−4 + √

37

3

(c)
5 + √

10

3

(d)
19 − √

21

10

(e)
314 + √

37

233

2.

√
5 − 1

2

3.
5 − √

5

2
,

87 + √
5

62
4. (a) [2; 4]

(b) [2; 1, 1, 1, 4]
(c) [2; 3]
(d) [2; 1, 3]
(e) [1; 3, 1, 2, 1, 4]

5. (b) [1; 2], [1; 1, 2], [3; 1, 6], [6; 12]
6. 1677/433
7. (a) 1264/465
9. (a) 29/23

(b) 267/212
11. 3, 22/7, 355/113

SECTION 15.4

5. The immediate successor of 5/8 in F11 is 7/11.
6. |√3 − 7

4 | < 1
4·8

7. |π − 22
7 | < 1

7·9
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420 ANSWERS TO SELECTED PROBLEMS

SECTION 15.5

2. (a) x = 8, y = 3.
(b) x = 10, y = 3.
(c) x = 17, y = 4.
(d) x = 11, y = 2.
(e) x = 25, y = 4.

3. (a) x = 3, y = 2; x = 17, y = 12; x = 99, y = 70.
(b) x = 2, y = 1; x = 7, y = 4; x = 26, y = 15; x = 97, y = 56;

x = 362, y = 209.
(c) x = 9, y = 4; x = 161, y = 72.

4. 48, 1680
5. (a) x = 24, y = 5; x = 1151, y = 240.

(b) x = 51, y = 10; x = 5201, y = 1020.
(c) x = 23, y = 4; x = 1057, y = 184.

6. (a) x = 9801, y = 1820.
(b) x = 2049, y = 320.
(c) x = 3699, y = 430.

7. (a) x = 18, y = 5.
(b) x = 70, y = 13.
(c) x = 32, y = 5.

12. x = 449, y = 60; x = 13455, y = 1798.
13. (b) x = 254, y = 96; x = 4048, y = 1530.

(c) x = 213, y = 36; x = 2538, y = 429.

SECTION 16.2

1. (a) 299 = 13 · 23.
(b) 1003 = 17 · 59.
(c) 8051 = 83 · 97.

2. 4087 = 61 · 67.
3. (a) 1711 = 29 · 59.

(b) 4847 = 37 · 131.
(c) 9943 = 61 · 163.

4. (a) 1241 = 17 · 73.
(b) 2173 = 41 · 53.
(c) 949 = 13 · 73.
(d) 7811 = 73 · 107.

5. 1189 = 29 · 41.
6. (a) 8131 = 47 · 173.

(b) 13199 = 67 · 197.

(c) 17873 = 61 · 293.

SECTION 16.3

2. (a) x ≡ 13, 20, 57, 64 (mod 77).
(b) x ≡ 10, 67, 142, 199 (mod 209).
(c) x ≡ 14, 32, 37, 55 (mod 69).

3. Alice wins if she chooses x ≡ ±73 (mod 713).
4. Alice loses if she chooses x ≡ ±676 (mod 3713).
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absolute pseudoprime numbers, 91–92, 93,
367

abundant numbers, 236
Académie des Sciences, 61, 129, 131, 220,

261–262
Academy of Science at Göttingen, 255
Adleman, Leonard (b. 1945), 205
Agrawal, Manindra (b. 1966), 358
Alcuin of York (c. 732–804), 38, 222
Alembert, Jean Le Rond d’ (1717–1783), 63
Alexandrian Museum, 14–15
L’Algebra Opera (Bombelli), 307
algebraic numbers, 254
American Journal of Mathematics, 288
American Mathematical Society,

228, 355
amicable numbers, 234–237
amicable pairs, 234
amicable triples, 237
Anthoniszoon, Adriaen (1527–1617), 332
Apéry, Roger (1916–1994), 377
Arabic numerals, 284
Archimedean property, 2
Archimedean value of π , 331
Archimedes (c.287–212 B.C.), 331, 350
area, of Pythagorean triangles, 250
arithmetic functions. See number-theoretic

functions
arithmetic of remainders. See congruences
arithmetic progressions of primes, 54–55,

59, 379
Arithmetica (Diophantus)

Bombelli and, 307

Fermat and, 87, 245–246, 257, 350
history of, 32–33, 85–86

arithmetica, in Pythagorean school, 13
Artin, Emil (1898–1962), 157
Artin’s conjecture, 157
Aryabhata (c. 476–550), 15
astrologia, in Pythagorean school, 13
astronomy, Gauss and, 63
Augustine (Saint) (354–430), 222
authentication of messages, 217–218
autokey ciphers, 200–201, 208

Bachet, Claude (1581–1638), 86, 245, 273
Barlow, Peter (1776–1862), 231
bases in place-value notation, 69–70
basis for induction, 4
basket-of-eggs problem, 83
Baudot code, 202, 208
Baudot, Jean-Maurice-Émile (1845–1903),

202
Bennett, G., 238
Berlin Academy, 130, 262, 329
Bernoulli, Daniel (1700–1782), 129, 130
Bernoulli inequality, 7
Bernoulli, James (1654–1705), 377
Bernoulli, Johann (1667–1748), 129
Bernoulli, Nicolaus (1695–1726), 129, 130
Bernoulli numbers, 377–378
Bertrand, Joseph (1822–1900), 48
Bertrand’s conjecture, 48–49
Beta, as nickname, 45
Bhargava, Manjul, 277
Bhaskara (1114 – c. 1185), 83

421
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Biblical references to numbers, 222, 235
binary exponential algorithm, 70–71
binary number system, 70–71
Binet formula, 296–298, 301
Binet, Jacques-Philippe-Marie

(1786–1856), 296
binomial coefficients

defined, 8
Fibonacci numbers formula, 302
identities of, 8, 10–12
as integers, 119

binomial congruences, 164, 165–166
binomial theorem, 9–10
Blum integers, 373
Blum, Manuel (b. 1938), 371
Blum’s coin flipping game, 371–374
Bombelli, Rafael (1526–1572), 307
Bonse’s inequality, 48
Borozdkin, K. G., 53
bracket function, 117–122
Brahmagupta (598 – c. 665), 83, 350
Brent, Richard, 241, 242, 360
Brillhart, John (b. 1930), 241, 361, 364
Brouncker, William (1620–1684), 320, 339,

340, 351
Brun, Viggo (1882–1978), 380
Brun’s constant, 380

Caesar, Julius (100–44 B.C.)
cipher system, 198, 207
Julian calendar, 122, 123

calendars, 122–127
cancellation of terms, in congruences,

66–67
canonical form, 42
Carlyle, Thomas (1795–1881), 175
Carmichael numbers, 91–92, 93, 367
Carmichael, Robert Daniel (1879–1967), 91
Carmichael’s conjecture, 136
Carr, George Shoobridge (1837–1914), 303
Catalan equation, 257–258
Catalan, Eugène (1814–1894), 12
Catalan numbers, 12
Catalan’s conjecture, 258
Cataldi, Pietro (1548–1626), 224
cattle problem, 350
Cauchy, Augustin (1789–1857), 334
century years, 123, 124
Ceres (dwarf planet), 63
chain of inequalities, 317–318, 321

Chang Ch’iu-chien (6th century A.D.), 37
Chebyshev, Pafnuty (1821–1894), 48, 53,

379
check digits, 72–73, 75
Chinese mathematics

Chinese remainder theorem, 79–81,
139–140

Diophantine equations, 36–37
pirate problem, 83

Chinese remainder theorem, 79–81,
139–140

Cicero, Marcus (106–43 B.C.), 198
ciphers. See cryptography
ciphertext, 197
circles, inscribed in Pythagorean triangles,

250
Clavius, Christoph (1537–1612), 123
Cogitata Physica-Mathematica (Mersenne),

227
coin flipping, remote, 371–374, 375
Cole, Frank Nelson (1861–1926), 228
Cole prize, 355, 356
common divisors, 20–21

See also greatest common divisor
common multiple, 29
complete set of residues modulo n, 64, 68
complex analysis, in prime number theorem

proof, 380–382
composite numbers

defined, 39
highly composite, 305
primitive roots for, 158–163
See also factorization into primes;

primality tests
computation aids

congruences as, 66
Fermat’s little theorem as, 89, 92–93

computational number theory, 357
computers in number theory

as aid in proving conjectures, 357
amicable pairs discovery and, 235
Blum’s coin flipping game and,

373, 374
cryptography and, 197, 205, 206–207
factorization into primes and, 357
Fermat numbers and, 242
Fermat’s last theorem and, 255
Mersenne primes and, 231–232
Mertens’s conjecture and, 115–116
primality tests and, 358
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congruence modulo n, 63–64
congruences, 61–84

basic congruence properties, 63–68
binomial, 164, 165–166
check digits and, 72–73, 75
Chinese remainder theorem, 79–81
cryptography and, 198, 199, 201
day of the week calculations and,

123–127
divisibility tests, 69, 71–72, 73, 74
exponential, 168
Gauss and, 61–63
indices for solving, 164–167
linear in one variable, 76–78, 82, 83, 162
linear in two variables, 81–82, 83, 84
order of a modulo n, 147–150
place-value notation systems, 69–71
polynomial, 71–72, 152–154
simultaneous linear, 78–81, 83, 84
See also quadratic congruences

consecutive integers, divisibility relations
of, 25

consecutive primes, 50–51, 55–56
continued fractions

defined, 306–307
expansion algorithm, 326–328
factoring method, 361–364
Pell’s equation solutions, 340–347
See also finite continued fractions;

infinite continued fractions
convergents

finite continued fractions, 311–315,
317–319

infinite continued fractions, 321–322,
325–326, 329–331, 332

πcontinued fraction expansion,
327–328

A Course in Pure Mathematics
(Hardy), 353

cryptography, 197–218
autokey systems, 200–201, 208
Caesar system, 198, 207
defined, 197
ElGamal system, 214–218
exponential systems, 203–205, 209
Hill system, 201, 208
knapsack problems, 209–211, 213, 214
Merkle-Hellman knapsack system,

211–214
modular exponential systems, 209

monoalphabetic systems, 198, 199,
207–208

polyalphabetic systems, 198–201, 208
public-key systems, 205–207
RSA system, 205–207, 209
running key system, 200
Verman one-time pad system, 202–203,

208
Vigenère system, 199–201, 208

cubes of numbers
divisibility relations, 25
division algorithm applications, 19
Fermat’s challenge on, 337–338

Cunningham, Allen Joseph (1848–1928),
231

d’Alembert, Jean Le Rond (1717–1783), 63,
262

day of the week calculations, 123–127
de la Vallée-Poussin, Charles-Jean

(1866–1962), 381
de Polignac, Alphonse (1817–1890), 59
decimal number system, 71, 284
deciphering/decrypting, defined, 197

See also cryptography
deficient numbers, 236
definitions, using mathematical induction,

5, 6
denominator(s)

continued fractions, 311–312, 313, 314
Legendre symbol, 175
partial, 310

Descartes, René (1596–1650)
amicable pair discovery, 235, 236
Mersenne and, 219, 220
sum of three squares verification, 273

Dickson, Leonard Eugene (1874–1954),
278, 355

difference of two squares, integers as,
269–270, 271–272

Diffie, Bailey Whitfield (b. 1944), 205
digital signatures, 217–218
digits, defined, 71
Diophantine equations

ax + by = c, 33–36, 37–38, 315–317, 319
ax + by + cz = d , 37
continued fraction solutions, 315–317,

319
defined, 33
Fibonacci and, 283–284
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history of, 32–33
linear congruences and, 76, 78, 82
linear in three unknowns, 37
linear in two unknowns, 33–36, 37–38,

315–317, 319
solvability conditions, 33–34
word problems, 36–37, 38
x2 + y2 = z2, 245–250
x4 + y4 = z2, 252–253
x4 − y4 = z2, 255–257
x4 + y4 = z4, 253
xn + yn = zn , 245–246, 254–255

Diophantus of Alexandria (fl. A.D. 250),
32–33, 273

See also Arithmetica
Dirichlet, Peter Gustav Lejeune

(1805–1859)
divergent series, 379
Euler’s criterion proof, 172
Fermat’s last theorem and, 254
pigeonhole principle, 264
on primes in arithmetic progressions, 54,

186
Dirichlet’s theorem, 54–55
Discorsi (Galileo), 220
discrete logarithm problems, 214–215
Disquisitiones Arithmeticae (Gauss)

history of, 61, 63
importance of primality tests, 358
index of a relative to r , 163
on primitive roots, 157
quadratic reciprocity law and, 186
as standard work, 175
straightedge and compass constructions,

238
divergent series, 379
divisibility tests

congruences and, 69, 71–72, 73, 74
Fermat’s little theorem and, 92

divisibility theory, 17–32
division algorithm, 17–19
Euclidean algorithm, 26–29
greatest common divisor, 19–26, 30–32
least common multiple, 29–30

divisible, as term, 20
division algorithm, 17–19
division, using congruences, 66, 67–68
divisors

common, 20–21
defined, 20

Mersenne numbers, 230–231
See also greatest common divisor

double Wieferich primes, 258

e (natural log base), 328–329
early number theory, 13–16
eggs-in-a-basket problem, 83
Eisenstein, Ferdinand (1823–1852), 186
El Madschriti of Madrid (11th cent.), 235
An Elementary Proof of the Prime Number

Theorem (Selberg), 383
Éléments de Geometrie (Legendre), 175
Elements (Euclid)

Diophantine equations and, 33
Euclidean algorithm, 26
Euclid’s theorem, 46–48
history of, 15, 85
perfect numbers and, 222
proposition 14, 39–40
Pythagorean triangle formula, 246
Pythagoreans and, 42

eleven (number), divisibility tests for, 71, 72
ElGamal cryptosystem, 214–218
ElGamal, Taher (b. 1955), 214
Elkies, Noam (b. 1966), 279
enciphering/encrypting, defined, 197

See also cryptography
Encke, Johann Franz (1791–1865), 378
encryption keys. See keys for cryptosystems
equality, congruence properties and, 65–66,

76
Eratosthenes of Cyrene (c. 276–194 B.C.),

45, 350
Erdös, Paul (1913–1996), 355–357, 383
Essai sur la Théorie des Nombre

(Legendre), 175, 186, 378
Essay pour les coniques (Pascal), 219
Euclid (fl. 300 B.C.), 15, 246

See also Elements
Euclidean algorithm, 26–29
Euclidean numbers, 46–47
Euclid’s lemma, 24
Euclid’s theorem, 46–48, 54, 134–135
Euler, Leonhard (1707–1783), 279

amicable pairs discovery, 235, 236
biographical information, 129–131, 262
Catalan equation and, 258
Diophantine equations, 38
Diophantus’s Arithmetica and, 33
e representation, 328
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on even perfect numbers, 223
Fermat numbers and, 238, 240, 241
Fermat’s last theorem and, 254
Fermat’s little theorem proof, 87
fundamental theorem of algebra proof, 63
Goldbach correspondence, 51, 52, 58,

130
illustration of, 130
Mersenne numbers and, 227–228
odd perfect numbers and, 232, 233
π terminology, 327
Pell’s equation solution, 339–340
prime number formulas, 265, 273, 279
prime-producing functions and, 56–57
primitive roots for primes, 162
quadratic reciprocity law and, 185
on triangular numbers, 15
Waring’s problem conjecture, 355
zeta function formulas, 377, 378

Euler polynomial, 56–57
Euler’s criterion, 171–174, 180
Euler’s generalization of Fermat’s theorem

applications of, 139–141
defined, 136–137
Fermat’s corollary of, 138
proofs of, 137–138, 139, 141
RSA cryptosystem and, 206

Euler’s identity, 273–274, 277
Euler’s phi-function φ(n)

applications of, 145–146
defined, 131–132
Euclid’s theorem and, 134–135
as even integer, 134
Gauss’s theorem and, 141–143, 146
Möbius inversion formula and, 144–145
as multiplicative function, 133, 142
prime-power factorization of n and,

132–133, 134
primitive roots and, 150–151
properties of, 135–136
sum of integers identity, 143
table of, 407–408

even-numbered convergents, 317–318
even numbers

defined, 18
Goldbach’s conjecture and, 51–53
perfect, 223, 225, 226, 227
Pythagorean views, 14

everything-is-a-number philosophy, 14
exponential congruences, 168

exponential cryptosystems, 203–205, 209
exponents

in binary exponential algorithm, 70–71
discrete logarithm problems and,

214–215
of highest power of p in factorials,

117–118, 121, 122
universal exponent λ(n), 162
to which a belongs modulo n, 147–150

φ(n). See Euler’s phi-function
factor bases, 364–365
factorials (!)

exponent of p in, 117–118, 121, 122
inductively defined, 5

factorization into primes
canonical form, 42
computers and, 357
continued fraction method, 361–364
exponent of p in factorials, 117–118,

121, 122
Fermat method, 97–100, 102
of Fermat numbers, 238, 240–243, 357,

360, 361, 364
of Fibonacci numbers, 287, 298–299
fundamental theorem of arithmetic and,

40, 41–42
Kraitchik method, 100–101, 102
of Mersenne numbers, 228
p - 1 method, 360–361
quadratic sieve algorithm, 364–366
remote coin flipping and, 371–374,

375
rho (ρ) method, 358–360
RSA cryptosystem and, 205, 206–207
uniqueness of, 41

factors. See divisors
Faltings, Gerd (b. 1954), 254
Farey fractions, 334–337
Farey, John (1766–1826), 334, 335
Fermat-Kraitchik factorization method,

97–102
Fermat numbers

Catalan equation and, 258
defined, 237
factorization into primes, 238, 240–243,

357, 360, 361, 364
primality tests, 228, 239–240, 241
properties of, 238–239, 243–244, 385
as sum of two squares, 265
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Fermat, Pierre de (1601–1665)
amicable pair discovery, 235, 236
biographical information, 85–87
corollary of Euler’s generalization, 138
cubes of prime numbers challenge,

337–338
Diophantus’s Arithmetica and, 32–33,

245
Fermat numbers and, 237–238
illustration of, 86
Mersenne and, 220, 265
Mersenne number divisors, 230
Pell’s equation challenge, 339, 340, 350
primes as sums of squares, 265–267, 273
Pythagorean triangle areas, 250, 257

Fermat primes, 237, 238–239
Fermat’s last theorem

history of, 245–246, 254–255
x4 + y4 = z2 case, 252–253
x4 − y4 = z2 case, 255–257
x4 + y4 = z4 case, 253

Fermat’s little theorem
as computation aid, 89, 92–93
defined, 87–89
Euler’s generalization of, 136–141
Euler’s proof of, 87
falseness of converse of, 89–90
Lucas’s converse of, 367–368
p - 1 factorization method and, 360
primality tests and, 366–369

Fermat’s method of infinite descent, 252,
254, 258, 273, 339

Fermat’s test for nonprimality, 366–367
Fibonacci (Leonardo of Pisa) (1180–1250)

biographical information, 283–285
continued fractions, 306
illustration of, 284
recursive sequences, 286

Fibonacci numbers, 284–302
Binet formula, 296–298, 301
continued fractions representation,

310–311
defined, 284–285
greatest common divisors of, 287–290
Lucas numbers and, 301
prime factors of, 287, 298–299
properties of, 291–295, 299–302, 385
sequence of, 285–287
square/rectangle geometric deception,

293–294

table of, 294
Zeckendorf representation, 295–296

Fibonacci sequence, 285–287
Fields medal, 356, 383
finite continued fractions

convergents of, 311–315, 317–319
defined, 306–307
linear Diophantine equation solutions,

315–317, 319
rational numbers as, 307–311, 318

first principle of finite induction, 2, 5
five, as number, 14
four, as number, 14
fourth powers, division algorithm

applications, 19
Frederick the Great (1712–1786), 130, 262
French Academy of Sciences. See

Académie des Sciences
French Revolution, 262–263
Frénicle de Bessy, Bernard (c. 1605–1675),

87, 220, 337, 338
Friday the thirteenth, 126
functions

greatest integer, 117–122
Liouville λ-function, 116–117, 122
Mangoldt �-function, 116
Möbius μ function, 112–117, 407–408
prime counting, 53–54, 375–377,

378–380, 381–382
prime-producing, 56–57
zeta, 377–378, 380–381
See also Euler’s phi-function;

multiplicative functions;
number-theoretic functions

fundamental solution of Pell’s equation,
347–349

fundamental theorem of algebra, 63
fundamental theorem of arithmetic,

39–42

Galilei, Galileo (1564–1642), 220
Gauss, Carl Friedrich (1777–1855)

biographical information, 61–63
congruence concept, 61
illustration of, 62
motto of, 356
on notationes vs. notiones, 94
on primality tests, 358
primes as sums of squares, 273
on primitive roots, 157, 162
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π (x) approximation, 378–379
quadratic reciprocity law and, 169, 186
straightedge and compass constructions,

62–63, 238–239, 243
See also Disquisitiones Arithmeticae

Gauss’s lemma
defined, 179–180
Legendre symbol and, 182, 184
quadratic residue of 2 and, 180–181

Gauss’s theorem on φ(n), 141–143, 146
generalized Fermat factorization method,

99–100, 102
generalized quadratic reciprocity law, 192
generalized Riemann hypothesis, 52
geometria, in Pythagorean school, 13
Germain primes, 182
Germain, Sophie (1776–1831), 182
Gershom, Levi ben (1288–1344), 258
Girard, Albert (1593–1632), 63, 265, 286
The Gold Bug (Poe), 199
Goldbach, Christian (1690–1764), 51, 52,

58, 130
Goldbach’s conjecture

equivalent statement of, 58
Euler’s phi-function φ(n) and, 136
overview, 51–53
sum of divisors σ (n) and, 111

greatest common divisor (gcd)
defined, 21, 24
divisibility relations, 19–21, 23, 25
of Fibonacci numbers, 287–290
least common multiple and, 30, 31
linear combination representation, 21–23
of more than two integers, 30–31
prime factorizations and, 42
of relatively prime numbers, 22–23

greatest integer function, 117–122
Gregorian calendar, 122–123
Gregory XIII (pope) (1502–1585), 122–123

Hadamard, Jacques-Salomon (1865–1963),
381

Hagis, Peter, 233
Halley, Edmund (1656–1742), 261
Halley’s comet, 92
Hamilton, William Rowan (1805–1865), 262
Hanke, Jonathan, 277
Hardy, Godfrey Harold (1877–1947)

biographical information, 353–355
Goldbach’s conjecture and, 52

Littlewood collaboration, 52, 57,
354–355, 376–377, 380

photo of, 354
on positive integers, 384
primes of the form n2 + 1, 57–58
on pure mathematics, 355
Ramanujan collaboration, 272, 303–305,

320
Riemann hypothesis and, 381
on Skewes number, 381

Hardy-Littlewood conjectures, 57, 376–377,
380

harmonia, in Pythagorean school, 13
harmonic mean H (n), 227
Haros, C. H., 334–335
Haselgrove, Colin Brian (1926–1964), 357
Hellman, Martin (b. 1945), 205, 211
highly composite numbers, 305
Hilbert, David (1862–1943), 278, 354
Hill cipher, 201, 208
Hill, Lester (1890–1961), 201
Hindu-Arabic numerals, 284
History of the Theory of Numbers (Moore),

355
Hobbes, Thomas (1588–1679), 220
Holzmann, Wilhelm (Guilielmus Xylander)

(1532–1576), 86
hundred fowls problem, 37
Hurwitz, Alexander, 241, 333
Huygens, Christiaan (1629–1695), 220

Iamblichus of Chalcis (c. 250–330 A.D.),
234

ideal numbers, 254
identification numbers, check digits for,

72–73
incongruence modulo n, 64
indeterminate problems. See Diophantine

equations; puzzle problems
indicator. See Euler’s phi-function
indices (index of a relative to r )

defined, 163
properties of, 164, 167–168
solvability criterion, 166–167
for solving congruences, 164–167
tables of, 165, 167

induction. See mathematical induction
induction hypotheses, 4
induction step, 4
inductive definitions, 5, 6
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infinite continued fractions
continued fraction algorithm,

326–328
defined, 319–320
e representation, 328–329
irrational numbers representation,

323–328, 329–331, 332
π representation, 320, 327–328
properties of, 320–322
square roots as, 307

infinite descent, Fermat’s method of, 252,
254, 258, 273, 339

infinite series
e representation, 328
π representation, 306
partition function, 305

infinitude of primes
arithmetic progressions of, 55–56
Dirichlet’s theorem, 54–55
Euclid’s theorem, 46–48, 54
Euler’s zeta function and, 377
Fermat numbers and, 239
Fibonacci numbers and, 291
of the form 4k + 1, 177–178
of the form 8k − 1, 182
Hardy-Littlewood conjecture, 57–58

integers. See numbers
International Congress of Mathematicians,

383
International Standard Book Numbers

(ISBNs), 75
Introductio Arithmeticae (Nicomachus), 79,

222
inverse of a modulo n, 77
irrational numbers

e as, 328–329
Farey fraction approximations of,

334–337
finite continued fraction representation,

319
infinite continued fraction representation,

307, 323–328, 329–331
πas, 329
rational number approximations of,

329–331, 332
square root of 2, 42–43
zeta function values, 377

irregular primes, 254
ISBNs (International Standard Book

Numbers), 75

Jacob and Esau story, 235
Jacobi, Carl Gustav (1804–1851), 279
Jacobi symbol (a/b), 191, 192
Jensen, K. L., 254
Journal de l’Ecole Polytechnique, 335
Journal of the Indian Mathematical Society,

320
Julian calendar, 122, 123

k-perfect numbers, 226
Kanold, Hans-Joachim, 232
Kayal, Neeraj, 358
keys for cryptosystems

automatic, 200
ElGamal system, 215–216, 217
Merkle-Hellman knapsack system, 211,

212, 213–214
modular exponentiation systems, 203,

205
running, 200
Verman, 202

knapsack cryptosystems, 211–214
knapsack problems, 209–211, 213, 214
Kraitchik factorization method, 100–101,

102
Kraitchik, Maurice (1882–1957), 100, 364
Kronecker, Leopold (1823–1891), 1, 61
Kulp, G. W., 199
Kummer, Ernst Eduard (1810–1893), 254

Lagrange, Joseph Louis (1736–1813)
biographical information, 261–263
conjecture on primes, 58
four-square theorem, 263, 273, 277
illustration of, 262
Pell’s equation solution, 339–340
polynomial congruence theorem,

152–154
Wilson’s theorem proof, 94

Lambert, Johann Heinrich (1728–1777),
329

Lamé, Gabriel (1795–1870), 28, 254, 288
Landau, Edmund (1877–1938), 53
Lander, L. J., 279
Landry, Fortune, 240, 243
Laplace, Pierre-Simon de (1749–1827), 63
leap years, 123, 124
least absolute remainder, 28
least common multiple, 29–30, 31
least nonnegative residues modulo n, 64
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least positive primitive roots, 156, 393
Lebesgue, V. A., 258
Legendre, Adrien-Marie (1752–1833)

amicable pair discovery, 235
continued fraction factoring method, 361
Fermat’s last theorem and, 254
overview of mathematical contributions,

175
primes as sums of squares, 273
primitive roots for primes, 162
π (x) approximation, 378–379, 381
quadratic reciprocity law and, 185–186

Legendre formula, 119
Legendre symbol (a/p)

defined, 175
properties of, 176–179, 183–184
quadratic congruences with composite

moduli, 189–190, 192–196
Lehman, R. S., 357
Lehmer, Derrick (1905–1991), 232
Leibniz, Gottfried Wilhelm (1646–1716),

87, 94
length of period (continued fraction

expansions), 322, 343, 345
Lenstra, W. Hendrik, Jr., 242
Leonardo of Pisa. See Fibonacci
Levi ben Gershon (1288–1344), 258
Liber Abaci (Fibonacci), 283, 284, 285, 306
Liber Quadratorum (Fibonacci), 283
liberal arts, 13
linear combinations, 21–22
linear congruences

defined, 76
one variable, 76–78, 82, 83, 162
simultaneous, 78–81, 82, 83, 84
two variables, 81–82, 83, 84

Linnik, Y. V. (1915–1972), 278, 279
Liouville, Joseph (1809–1882), 278
Liouville λ-function, 116–117, 122, 357
Littlewood, John Edensor (1885–1977)

Goldbach’s conjecture and, 52
Hardy collaboration, 52, 57, 354–355,

376–377, 380
prime counting inequality, 53
primes of the form n2 + 1, 57–58
π (x) approximation, 381

logarithmic integral function Li(x),
378–379, 381–382

long-distance coin flipping, 371–374, 375
Louis XVI (1754–1793), 262

Lucas, Edouard (1842–1891)
Fermat numbers and, 241
Fibonacci numbers and, 284, 288, 302
Mersenne numbers and, 228, 231, 232
primality test, 367–368

Lucas-Lehmer test, 232
Lucas numbers, 301
Lucas sequence, 6, 301, 385
Lucas’s converse of Fermat’s theorem,

367–368

μ function. See Möbius μ function
Mahaviracarya (c. 850), 38
Manasse, M. S., 242
Mangoldt �-function, 116
mathemata, in Pythagorean school, 13
Mathematical Classic (Chang), 37
mathematical induction

basis for the induction, 4
first principle of finite induction, 2, 5
induction hypotheses, 4
induction step, 4
method of infinite descent, 252, 254, 258,

273, 339
second principle of finite induction, 5–6

McDaniel, Wayne, 233
Measurement of a Circle (Archimedes), 331
Mécanique Analytique (Lagrange), 262
Les Mécaniques de Galilée (Mersenne),

220
mediant fractions, 335–336
Meditationes Algebraicae (Waring), 93, 278
Merkle-Hellman knapsack cryptosystem,

211–214
Merkle, Ralph (b. 1952), 211
Mersenne, Marin (1588–1648)

biographical information, 219–221
Descartes correspondence, 235
on factorization, 102
Fermat correspondence, 97, 235, 238, 265
illustration of, 221

Mersenne numbers
defined, 227
primality tests, 227–228, 229, 231–232
properties of, 230–231, 236
search for larger numbers, 231–232
table of, 409

Mersenne primes, 227, 228, 231
Mertens, Franz (1840–1927), 115
Mertens’s conjecture, 115–116
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method of infinite descent, 252, 254, 258,
273, 339

Mihailescu, Preda, 258
Miller-Rabin primality test, 369–370, 371
Mills, W. H. (b. 1921), 57
Möbius inversion formula

applications of, 115
defined, 113–114
Euler’s phi-function φ(n) and, 144–145

Möbius μ function
basic properties, 112–113, 117
defined, 112
greatest integer function and, 122
Mertens conjecture and, 115–116
Möbius inversion formula and, 113–114
table of, 407–408

modular exponentiation cryptosystems,
203–205, 209

monoalphabetic cryptosystems, 198, 199,
207–208

Monte Carlo (ρ) factorization method,
358–360

Moore, Eliakim Hastings (1862–1932), 355
Morain, François, 242
Morehead, J. C., 240, 241
Morrison, Michael A., 241, 361, 364
multiples, defined, 20
multiplicative functions

basic properties, 107–108, 111, 112
defined, 107
Möbius inversion formula and, 115
Möbius μ function as, 112
τ and σ as, 108–110

multiplicative inverse of a modulo n, 77
multiplicatively perfect numbers, 226
multiply perfect numbers, 226
Museum of Alexandria, 14–15

n!. See factorials
National Bureau of Standards, 232
natural numbers, defined, 1
near-repunit numbers, 386
“New Directions in Cryptography” (Diffie

and Hellman), 205
Newton’s identity, 10
Nickel, Laura, 231
Nicomachus of Gerasa (fl. 100), 15,

79, 222
nine, divisibility tests for, 71, 72
Noll, Landon Curt (b. 1960), 231

notation and symbols
binomial coefficients, 8
congruence, 63, 64
continued fractions, 306–307, 310
e, 328
factorials, 5
infinite continued fractions, 321, 322
Legendre symbol (a/p), 175
π , 327
	 f (d), 106–107

 f (d), 104, 109–110
use of, in Arithmetica, 32

number mysticism, 14
number of divisors τ (n)

basic properties, 103–107
defined, 103
Euler’s phi-function φ(n) and, 135
greatest integer function and, 120–121,

122
as multiplicative function, 108–110
table of, 407–408

number-theoretic functions, 103–127
calendar applications, 122–127
defined, 103
greatest integer function, 117–122
Möbius μ function, 112–117, 122,

407–408
number of divisors τ (n), 103–107,

108–110, 120–121, 122, 135, 407–408
See also Euler’s phi-function;

multiplicative functions; sum of
divisors

numbers
absolute pseudoprime, 91–92, 93, 367
abundant, 236
algebraic, 254
amicable, 234–237
Bernoulli, 377–378
Blum, 373
Carmichael, 91–92, 93, 367
Catalan, 12
composite, 39, 158–163, 305
deficient, 236
Euclidean, 46–47
even (see even numbers)
factorization into primes (see

factorization into primes)
Fermat (see Fermat numbers)
Fibonacci (see Fibonacci numbers)
highly composite, 305
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ideal, 254
irrational (see irrational numbers)
k-perfect, 226
Lucas, 301
Mersenne, 227–228, 229, 230–232, 236,

409
multiplicatively perfect, 226
multiply perfect, 226
natural, 1
near-repunit, 386
odd (see odd numbers)
palindromes, 75
Pell, 352
pentagonal, 15
perfect (see perfect numbers)
primality tests for (see primality tests)
prime (see prime numbers)
pseudoprime, 90–92, 93, 243, 367
rational, 307–311, 318, 329–331, 332,

334–337
relatively prime (see relatively prime

numbers)
representation of (see representation of

numbers)
Skewes, 381
sociable chains of, 237
square, 15, 16, 19, 25, 59
square-free, 44, 91–92, 110, 242–243
square-full, 44
strong pseudoprime, 367
superperfect, 227
triangular, 15–16, 26, 59, 252, 257, 281

numerals, Hindu-Arabic, 284
numerators

continued fractions, 311–312, 313, 314
Legendre symbol, 175

odd-numbered convergents, 317–318
odd numbers

defined, 18
divisibility relations, 25
Goldbach’s conjecture and, 52–53
Legendre symbol and, 183–184
perfect, 232–234
Pythagorean views, 14
table of prime factors of, 394–403

odd primes
as difference of two squares, 269–270
Gauss’s lemma and, 180–181
integers as sums of, 51–53, 58, 59

Legendre symbol and, 183–185
primitive roots for, 160–162, 181–182
properties of, 43, 92–93, 135,

151–152
as sum of four squares, 274–275
theory of indices and, 167, 168
Wilson’s theorem and, 95–96, 97

Odlyzko, Andrew, 116
one, as number, 14
one-time cryptosystems, 202–203
Ono, Ken, 305
Opera Mathematica (Wallis), 340
order of a modulo n, 147–150

π (pi)
continued fraction representation, 320
decimal expansion of, 357
historical approximations of, 331–332
infinite series representation, 306
irrationality of, 329

π (x) (prime counting function)
approximations of, 378–380, 381–382
of the form p = an + b, 53–54
prime number theorem and, 375–377

	 notation, 106–107
p - 1 factorization method, 360–361
palindromes, 75
Parkin, Thomas, 279
partial denominators, 307, 310
partial quotients, 310
partition theory, 304–305
Pascal, Blaise (1623–1662)

Fermat and, 86
mathematical induction work, 10
Mersenne and, 219, 220

Pascal, Étienne (1588–1651), 220
Pascal’s rule, 8–9
Pascal’s triangle, 9
Pell, John (1611–1685), 220, 340
Pell numbers, 352
Pell’s equation, 339–352

algebraic formula for, 349–350
continued fraction solutions, 340–347
fundamental solution, 347–349
history of, 339–340, 350
positive solutions, 340, 343, 346–350
successive substitution solutions, 348

pentagonal numbers, 15
Pepin, Théophile (1826–1904), 239
Pepin’s test, 239–240, 241
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perfect numbers
defined, 221
final digits of, 222, 225
general form of, 222–223
multiplicatively perfect, 226
multiply perfect, 226
odd, 232–234
properties of, 223–227
search for larger numbers, 228, 231–232
superperfect, 227

period (continued fraction expansions), 322,
342–343

periodic continued fractions, 322, 334,
342–347, 345–346

Peter the Great (1672–1725), 130
Pfaff, Johann Friedrich (1765–1825), 63
Philosophical Magazine, 334
philosophy, early number theory and, 14
Piazzi, Giuseppi (1746–1826), 63
pigeonhole principle, 264
pirate problem, 83
place-value notation systems, 69–71
plaintext, defined, 197
Plutarch (c. 46–120), 15
Pocklington, Henry (1870–1952), 368
Pocklington’s theorem, 368–369, 371
Poe, Edgar Allan (1809–1849), 199
Pohlig-Hellman cryptosystem, 203–205
Polignac, Alphonse de (1817–1890), 59
Pollard, John M., 241, 242, 358–361
Pólya, George (1888–1985), 357
Pólya’s conjecture, 357
polyalphabetic cryptosystems, 198–201, 208
polygons, construction of, 62–63, 238–239,

243
polynomial congruences, 71–72, 152–154
polynomial time primality test, 358
polynomials, prime-producing, 56–57
positive integers, defined, 1
powerful numbers, 44
powers of numbers

odd primes, primitive roots for, 160–162
order of a modulo n and, 149–150

Powers, R. E., 231
primality tests

computers and, 358
efficient algorithms for, 358
for Fermat numbers, 228, 239–240, 241
Fermat’s little theorem methods, 89,

366–369

for Mersenne numbers, 227–228, 229,
231–232

Miller-Rabin test, 369–370, 371
Pepin’s test, 239–240, 241
Pocklington’s theorem method, 368–369,

371
Wilson’s theorem method, 95

prime factorization. See factorization into
primes

prime number theorem
arithmetical proof of, 356, 383
complex proofs of, 380–382
defined, 375
length of interval of primes and,

381–382
prime counting function and, 375–377,

381–383
zeta function and, 377–378, 380–381

prime numbers, 39–60
arithmetic progressions of, 54–55, 59
Bertrand’s conjecture, 48–49
consecutive, 50–51, 55–56
defined, 39
Fermat, 237
Fibonacci numbers as, 287, 290–291
of the form 2k − 1, 223–224
of the form 3n ± 1, 54
of the form 4n + 1, 53–54, 155–156,

177–178, 265–267
of the form 4n + 3, 53–54, 264, 267–268
of the form 8k ± 1, 181
of the form n2 + 1, 57–58
of the form p# + 1, 46
fundamental theorem of arithmetic,

39–42
Germain, 182
Goldbach’s conjecture, 51–53, 58, 111
intervals between, 50–51
irregular, 254
Mersenne, 227, 228, 231
near-repunit, 386
prime-producing functions, 56–57
primitive roots of, 150, 154–158, 182
regular, 254
repunit, 49, 50, 370, 386
sieve of Eratosthenes and, 44–46, 49
as sum of four squares, 275–277
tables of, 404–405
three-primes problem, 355
twin, 50, 58, 59
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Wieferich, 258
See also infinitude of primes; odd primes

prime-producing functions, 56–57
primers (autokey cryptosystems), 200
primitive Pythagorean triples, 246–250,

251–252
primitive roots

for composite numbers, 158–163
defined, 150
ElGamal cryptosystem and, 214–218
Legendre symbol and, 181–182
number of, 151
for powers of odd primes, 160–162
for prime numbers, 154–158, 162
properties of, 151–152
tables of, 156, 393

probabilistic primality test, 370
Probationers (Pythagorean school), 14
proofs, using mathematical induction, 2–6
Proth, E., 371
pseudoprime numbers

absolute, 91–92, 93, 367
defined, 90
Fermat numbers as, 243
properties of, 90–92, 93
with respect to base a, 91, 367
strong, 371

public-key cryptosystems
ElGamal system, 214–218
Merkle-Hellman knapsack system,

211–214
origin of, 205
RSA system, 205–207

puzzle problems
cattle problem, 350
Chinese remainder theorem and, 79–81
Diophantine equations, 36–37, 38
hundred fowls problem, 37

Pythagoras (c. 585–501 B.C.)
amicable pair discovery, 236
early number theory, 13–14
on irrational numbers, 42–43
Pythagorean triangle formula, 246
on triangular numbers, 15

Pythagorean triangles, 246, 250, 257, 259,
260

Pythagorean triples, 246–250, 251–252
Pythagoreans

amicable numbers and, 235
history of, 14

number classification, 42
on perfect numbers, 221

quadratic congruences
in Blum’s coin flipping game,

371–373
with composite moduli, 189–190,

192–196
defined, 95
indices for solving, 164–165
primitive roots, 155–156
quadratic reciprocity law and, 169,

189–190
simplification of, 169–171
solvability criteria, 170, 174, 177, 192,

194–195
Wilson’s theorem and, 95–96, 97

quadratic nonresidues
defined, 171
Euler’s criterion and, 171–174, 180
Legendre symbol and, 178–179

quadratic reciprocity law
applications of, 187–192
defined, 186
Gauss’s lemma and, 179
generalized, 192
history of, 169, 185–186

quadratic residues
defined, 171
Euler’s criterion, 171–174
Gauss’s lemma and, 180–181
Legendre symbol and, 178–179
sum of four squares problem and, 275

quadratic sieve factoring algorithm,
364–366

quadrivium, 13
quotients, 17, 310

ρ factorization method, 358–360
rabbit problem, 285
radius of circles inscribed in Pythagorean

triangles, 250
Ramanujan, Srinivasa Aaiyangar

(1887–1920)
biographical information, 303–306
continued fractions, 320
illustration of, 304
on the number 1729, 272
universal quadratics, 277

rapid primality tests, 358
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rational numbers
Farey fraction approximations of,

334–337
as finite continued fractions, 307–311,

318
as irrational numbers approximation,

329–331, 332
“Recherches d’ Analyse Indéterminée”

(Legendre), 175
rectangle/square geometric deception,

293–294
recursive sequences, 286
reduced set of residues modulo n, 141, 168
Regiomontanus (Johann Müller)

(1436–1476), 83, 85–86, 280
Regius, Hudalrichus (fl. 1535), 224
regular polygons, 62–63, 238–239
regular primes, 254
relatively prime numbers

as coefficients in Diophantine equations,
35–36, 38

congruence solutions and, 77–78
continued fraction numerators and

denominators, 314
defined, 22–23
Fermat numbers as, 239
Fibonacci numbers as, 286–288
in Pythagorean triples, 237
in triples vs. pairs, 31

remainder(s)
Chinese remainder theorem, 79–81
congruences and, 64–65, 66, 67
defined, 17
Euclidean algorithm and, 26–29
least absolute, 28

remote coin flipping, 371–374
representation of numbers, 261–281

base b place-value notation, 69–70
binary system, 70–71
with continued fractions, 307–311
decimal system, 71
as difference of two squares, 269–270,

271–272
e, 328–329
irrational numbers, 323–328, 329–331,

332
π , 306, 320, 327–328
as sum of cubes, 272, 278
as sum of fifth powers, 278
as sum of four squares, 263, 273–278

as sum of fourth powers, 278
as sum of higher powers, 278–279, 280,

281
as sum of three squares, 272–273
as sum of two squares, 264–269,

270–271, 272
Waring’s problem and, 278–279

repunit primes, 49, 50, 370, 386
rho (ρ) factorization method, 358–360
Riemann, Georg (1826–1866), 380–381
Riemann’s hypothesis, 52, 380–381
Riemann’s explicit formula, 380
Rivest, Ronald (b. 1947), 205
RSA challenge numbers, 207, 364
RSA cryptosystem, 205–207
Rudolff, Christoff (c. 1500–1545), 38
running key ciphers, 200

σ (n). See sum of divisors

 notation, 104, 109–110
St. Petersburg Academy, 130, 131
Saxena, Nitin (b. 1981), 358
Scientific American, 200, 207
second principle of finite induction, 5–6
seeds (autokey cryptosystems), 200
Selberg, Atle (1917–2007), 356, 383
Selfridge, John, 241
set of residues modulo n

complete, 64, 68
reduced, 141, 168

seven liberal arts, 13
Shamir, Adi (b. 1952), 205, 213
sieve of Eratosthenes, 44–46
signatures for encrypted messages, 217–218
simple finite continued fractions, 307

See also finite continued fractions
simple infinite continued fractions, 321, 322

See also infinite continued fractions
simultaneous linear congruences

one variable, 78–81, 82, 83
two variables, 81–82, 83, 84

Skewes number, 381
Skewes, Stanley (1899–1988), 381
smallest positive primitive roots, 156, 393
sociable chains, 237
Sophia Dorothea (Queen Mother of

Prussia), 130
square-free numbers

Euler’s phi-function φ(n) and, 135
Fermat numbers as, 242–243
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number of divisors τ (n) and, 110
properties of, 44
pseudoprimes as, 91–92

square-full numbers, 44
square numbers

divisibility relations, 19, 25
final digits of, 102
as mean of twin primes, 59
properties of, 15, 16
sum and number of divisors and, 110

square/rectangle geometric deception,
293–294

square roots, continued fractions and, 307
squares of numbers, division algorithm

applications, 18, 19
Standards Western Automatic Computer

(SWAC), 232
Steuerwald, R., 232
story problems. See puzzle problems
straightedge and compass constructions,

62–63, 238–239, 243
strong pseudoprime numbers, 371
subset sum (knapsack) problems,

209–211
sum of cubes, 272, 278
sum of divisors σ (n)

amicable numbers and, 234
basic properties, 103–107, 111
defined, 103
Euler’s phi-function φ(n) and, 135
greatest integer function and, 120–121
as multiplicative function, 108–110
perfect numbers and, 221–222
table of, 407–408

sum of fifth powers, 278, 279
sum of four squares, 263, 273–278
sum of fourth powers, 278, 279
sum of n nth powers, 279
sum of three squares, 272–273
sum of two squares, 270–271, 272
Sun-Tsu (c. 250), 79, 80
superincreasing sequences, 210
superperfect numbers, 227
SWAC (Standards Western Automatic

Computer), 232
Swiss Society of Natural Sciences, 131
Sylvester, James Joseph (1814–1897), 58,

234
symbols. See notation and symbols
Synopsis of Pure Mathematics (Carr), 303

systems of congruences. See simultaneous
linear congruences

τ (n). See number of divisors
Tchebycheff, Pafnuty L. (1821–1894), 48,

53, 379
te Riele, Herman, 116
terminating zeros in factorials, 118, 121
Thabit ibn Qurrah (c. 836–901), 235, 237
Theon of Alexandria (4th cent. A.D.), 15
Théorie des Fonctions Analytique

(Lagrange), 262–263
Théorie des Nombres (Legendre), 175, 361
Théorie des Nombres (Lucas), 367
theory of congruences. See congruences
Theory of Numbers (Barlow), 231
theory of partitions, 304–305
three, as number, 14, 249–250
three-primes problem, 355
Thue, Alex (1863–1922), 264
Thue’s lemma, 264–265
Tijdeman, R., 258
Torricelli, Evangelista (1608–1647), 220
Traicté des Chiffres (Vigenère), 199
Traité du Triangle Arithmétique (Pascal), 10
triangles

Pascal’s, 9
Pythagorean, 246, 250, 257, 259, 260

triangular numbers
defined, 15
divisibility relations, 26
expressible as sum and difference of

cubes, 281
as mean of twin primes, 59
properties of, 15–16
Pythagorean triples and, 252
as sides of Pythagorean triangles, 257

trivium, 13
Tsu Chung-chi (430–501), 332
Turcaninov, A., 234
twin prime constant, 380
twin primes

convergent series of, 380
defined, 50
Euler’s phi-function φ(n) and, 135
perfect numbers and, 227
properties of, 50, 58, 59
sum of divisors σ (n) and, 111
table of number of pairs of, 406

two, as number, 14



P1: BINAYA KUMAR DASH/BINAYA KUMAR DASH P2: BINAYA KUMAR DASH

bur83147_ch19_421_436 Burton DQ032A-Elementary-v2.cls December 16, 2009 16:55

436 INDEX

Über die Anzahl der Primzahlen unter einer
gegebenen Grösse (Riemann), 380

uniqueness of prime factorization, 41
uniqueness of representation of integers,

265–266, 267
universal exponent λ(n), 162
University of Basel, 129, 130
Utriusque Arithmetices (Regius), 224

Vallée-Poussin, Charles-Jean de la
(1866-1962), 381

Verman cryptosystem, 202–203, 208
Verman, Gilbert S., 202
Vigenère, Blaise de (1523–1596),

199–200
Vigenère cryptosystem, 199–201, 208
Vinogradov, Ivan M. (1891–1983), 52–53,

355

Wagstaff, Samuel S., 255
Wallis, John (1616–1703), 320, 338, 339
Waring, Edward (1734–1798), 93–94, 278
Waring’s problem, 278–279, 354–355
Washington, George (1732–1799), 123
weekday number w calculations, 125–126,

127
well-ordering principle, 1–2, 17
Western, Alfred E. (1873–1961), 240, 241

Wieferich, Arthur (1884–1954), 258
Wieferich primes, 258
Wiles, Andrew (b. 1953), 255
Williams, H. C., 360
Wilson, John (1741–1793), 93
Wilson’s theorem

defined, 93–95
Lagrange’s theorem and, 154
quadratic congruences and, 95–96, 97,

173
witnesses, for compositeness, 369
Wolf prize, 356
word problems. See puzzle problems
work factors, in computerized factorization,

206–207

Xylander, Guilielmus (Wilhelm Holtzman)
(1532–1576), 86

Yen Kung (14th century), 38
Yih-hing (d. 717), 83

Zeckendorf representation, 295–296
zero(s)

congruence to, 67
terminating, in factorials, 118, 121
of the zeta function, 380–381

zeta function ζ (s), 377–378



P1: BINAYA KUMAR DASH

bur83147_end Burton DQ032A-Elementary-v2.cls December 14, 2009 16:20

INDEX OF SYMBOLS

Page
Symbol Meaning Reference

n! n factorial 5
( n

k ) binomial coefficient 8
tn nth triangular number 15
a|b a divides b 20
a � | b a does not divide b 20
gcd(a, b) greatest common divisor of a and b 21
lcm(a, b) least common multiple of a and b 29
p# product of primes not exceeding p 46
Rn nth repunit 49
πa,b(x) number of primes of the form an + b

not exceeding x 53
a ≡ b (mod n) a is congruent to b modulo n 63
a �≡ b (mod n) a is incongruent to b modulo n 64
(amam−1 · · · a2a1a0)b base b place-value notation for an integer 70
τ (n) number of positive divisors of n 103
σ (n) sum of positive divisors of n 103∑

d|n sum over divisors d of n 104
�d|n product over divisors d of n 106
ω(n) number of distinct prime divisors of n 111
σs(n) sum of sth powers of positive divisors of n 111
μ(n) Möbius mu function 112
�(n) Mangoldt lambda function 116
λ(n) Liouville lambda function 116
[x] greatest integer not exceeding x 117
φ(n) Euler phi function 131–132
indr a index of a relative to r 163
(a/p) Legendre symbol (p prime) 175
(a/b) Jacobi symbol 191
Pn nth perfect number (in order of discovery) 222
Mn nth Mersenne number 227
Fn nth Fermat number 237
g(k) Waring’s function for all positive integers 278
G(k) Waring’s function for sufficiently large integers 279
un nth Fibonacci number 285
α, β (1 + √

5)/2, (1 − √
5)/2 296

Ln nth Lucas number 301
p(n) number of partitions of n 304
≈ approximately equal 305
[a0; a1, . . . , an] finite simple continued fraction 310
Ck = pk/qk convergent of a continued fraction 311
[a0; a1, a2, . . .] infinite continued fraction 321
[a0; a1, . . . , am, b1, . . . , bn] periodic continued fraction 322
Fn Farey fractions of order n 334
π (x) number of primes not exceeding x 356
�(n) total number of prime factors of n 357
log n logarithm to base e 375
Li(x) logarithmic integral 378
π2(x) number of twin primes not exceeding x 380
ζ (s) Euler zeta function 380
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Joseph Louis Lagrange (1736–1813)

John Wilson (1741–1793)
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Augustus Möbius (1790–1868)

Gabriel Lamé (1795–1870)
Karl Gustav Jacobi (1804–1851)

Peter Gustav Dirichlet (1805–1859)
Joseph Liouville (1809–1882)

Ernst Kummer (1810–1893)
P. L. Tchebychef (1821–1894)

Ferdinand Eisenstein (1823–1852)
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Frederick Nelson Cole (1861–1927)

David Hilbert (1862–1943)
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Andrew Wiles (1953–
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Pythagoras (569–500 B.C.)

Euclid (c. 350 B.C.)

Eratosthenes (276–196 B.C.)

Nicomachus (c. 100)

Diophantus (c. 250)

Brahmagupta (c. 625)

Alcuin of York (735–804)

Thabit ibn Kurrah (826–901)

Fibonacci (1180–1250)
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